

$4,070 / 6$

$$
\text { Vors. } 1 \%
$$

Digitized by the Internet Archive in 2016 with funding from Wellcome Library

A S Y S T E M

 OF
FAMILIAR PHILOSOPHY:

IN

TWELVE LECTURES;

BEING TIE COURSE USUALLY READ BY

MR. A. WALKER.

CONTAINING
THE ELEMENTS AND THE PRACTICAL USES TO BE DRAWN FROM THE CHEMICAL PROPERTIES OF MATTER: THE PRINCIPLES AND

APPLICATION OF MECHANICS; OF HYDROSTATICS;
OF HYDRAULICS; OF PNEUMATICS; OF
MAGNETISM; OF ELECTRICITY;
OF OPTICS; AND OF ASTRONOMY.

INCLUDING EVERY MATERIAL MODERN DISCOVERY AND IMPROVEMENT, TO THE PRESENT TIME.

> ILLUSTRATED BY FORTY-NINE COPPER-PLATES, NE.ATLY AND ACCUR.ITEL1* ENGRAVED.

A NEW EDITION; IN TWO VOLUMES.

VOL. I.

LONDON:

PRINTED FOR THE AUTHOR, AT HIS HOUSE, NO. 42, CONDUIT-STREET, HANOVER-SQUARE; G. KEARSLEY, FLEET-STREET; BELL, AND BRADFUTE, EDINBUKGH; BRASH AND REID, GLASGOW; AND COLBERT, CAPEL-STREET, DEBLIN.

PREFACE.

INSTINCT is the voice of God; it directs our firt -motions to feel, fee, hear, tafte, and fmell, every thing that comes in our way. Here begins the firft chapter of experimental philofophy ; here is laid the corner ftone for our knowledge of Na ture and her laws: for at a time when a nurfe fuppofes a child is only amufing itfelf by ftriving to catch hold of every thing within and without its reach, it is laying in a ftock of important information! By this propenfity, we learn to know diftances, hardnefs, foftnefs, painful and pleafurable objects, heat, cold, and many other qualities of bodies, long before it is fufpected by the unobferving part of mankind. Curiofity being thus natural to the foul of man, we are folicitous after every fpecies of information; and it would be extremely unnatural
to fuppofe we fhould be lefs inquifitive, lefs folicitous after the moft important of truths-I mean the knowledge of Nature and her laws; for it can fcarcely be thought poffible that any rational creature can be unconcerned to know the fate of the world about him, or to behold the various phænomena that perpetually obtrude themfelves upon the fenfes, without being ftrongly prompted to enquire into their caufe and nature. And though philofophy has of late been branded as the caufe of mifchief by thofe whofe intereft it is to promote ignorance and flavery in the world; the wife and virtuous know well that there is no enquiry whatfoever more calculated to infpire every good difpofition of the heart, and every ufeful acquirement of the head; that points out a more rational path to a knowledge of the Deity, or more rationally weans the mind from narrow and confining prejudices. In the following Lectures, Nature has been fet to work in variety of ways, to prove the truth of her own operations; and no affent has been afked to a fingle propofition, that was not fairly and openly proved by experiment or obfervation: for our pre-
fent philofophy but points out the means of interrogating Nature in the way of trial and experiment. This, however, is what gives it the fuperiority over that of the ancients; for their fyftems of philofophy were built fo much upon hypothefis and conjecture, that one fyftem has given way to another in fuch fucceffion, that many fuppofe ours fhall give way in due time, and be fwallowed up in the tide of opinion. But if the approach to truth by the way of analyfis be flow, it is fure: facts command conviction; and, to the glory of our own times, fanciful conjectures fly before experiment, like flhadows before the fun. Truth, indeed, is a difficult acquifition: We find it matter of circumfection to fet down any thing as fuch even in our moft ordinary affairs; but much more fo when we dare to inveftigate Nature; we muft fee her, and try her on all fides, and be fure that fhe ftill confeffes the fame thing, or it will be more than probable we fhall deceive ourfelves. Pythagoras is faid to have been fo confcious of the difficulty of truth, that he would not fuffer himfelf to be called one of the Magi (one of thofe oftentatious names
which the learned of his time took upon them)... No, faid he, I am a philofopher, that is to fay, I am a lover of, and an enquirer into, truth, rather than one really poffeffed of it. Like him the fcience and its profeffors affect the fame modefty; as knowing, that when we have ftretched our faculties to the utmoft pitch, we know but little in comparifon of the immenfity that lies beyond our reach. Yet, neverthelefs, though our fcanty enquiries are confined to fhort limits, and though we can but fee and reflect upon the ways of Nature imperfectly; it gives an high, it gives a rational delight to the mind even to be loft in fuch excurfions ; for they teach us to be humble, they teach us to be wife ; they teach us to be modeft concerning our own abilities, and to pay a fuitable adoration to that Being who fits at the head of thefe things.

A beautiful writer obferves, that the univerfe may be compared to a book written with fublime obfcurity! where the author, feeming to level himfelf to the capacity of his readers, almoft perfuades them they nearly underftand the whole. Happy for
us who enter this labyrinth, if we do not miftake the path! Much has been done in thefe latter ages for the progrefs of the human mind, but little for our fpecies; much for the glory of man, fomething for his liberty, but not much for his happinefs. In a few directions our eyes are dazzled with a promifing light; but thick darknefs ftill covers an immenfe horizon. The mind of the philofopher exults with fatisfaction upon a fmall number of objects; but a view of the fupidity, the flavery, the extravagance, and the barbarity of man, takes off much from that fatisfaction. The friend of humanity can fcarcely receive unmixed pleafure, but by abandoning himfelf to the endearing hope of the future.

It is, however, a pleafing folace to the fudious mind, that the great, the liberal, the generous purpofe of philofophy, is an attempt to let mankind fee what Nature is, that they may judge between her works, and the extraneous fyftems of art and police. It is the bufinefs of the teacher in phylofophy (in order that it may have its moral effect),
that he have nothing to do with the bitternefs of fatire, or the enchantments of the theatre: neither the thunder of eloquence, nor the fublime of infpiration, fhould enter into his difquifitions: he fhould confine himfelf to the fimplicity of reafon : he fhould open the book of Nature before his readers; this fpeaks an intelligible language to all underftandings. He fhould fhew that the foundation of morality is in the conftitution of things : he fhould fuppofe nothing; but endeavour to prove all he inculcates.

In the following work I have endeavoured to follow up thefe ideas, many of which are not my own: I have borrowed liberally, not only the doctrine, but in many inftances the very words of various authors and experimentalifts, where I found them more intelligible, or better, than any I could fubfitute in their place.

But having been much ufed to arrangement, in order to render my oral lectures plain and fimple, I hope the reader will find the attention paid to
that circumftance in the following fheets contribute to the eafy apprehenfion of the fyftem and unity attempted in them. The work having. been written at various times, and in various places, tautology has crept into many parts of it : and I fear fome are more condenfed than they fhould be in a fyftem of familiar philofophy. Originality, or the pride of difcovery, has not led me beyond the bounds of what I believe to be truth. The identity of fire, light, heat, caloric, phlogifton, and electricity, or rather their being but modifications of one and the fame principle, as well as their being the grand agents in the order of nature; thefe are the leading problems of the work; and the parts which have, in a great meafure, any pretenfions to novelty. They do not militate againft the Newtonian fyftem; and are prefented to the reader more in the form of queries, than as doctrines fully eftablifhed: they do not interfere with the elementary part of the work; or influence thofe conclufions that have been fanctified by time and experience. Whether I am right or wrong in my ideas of them, I doubt
not but they will have a fair and candid reading. The theory was not fought, but has obtruded itfelf through an experience of near forty years: and though it differs in many points from the late received and adopted fyftem of chemiftry, my admiration of that fimple and elegant fyftem is not at all diminifhed; I rather lament that its worthy and ingenious founder did not live to have perfected fo excellent and promifing a beginning. It may appear bold, invidious, or like the affectation of fingularity, to differ from doctrines that are become eftablifhed throughout Europe: but I dare do this, and more, when truth is the object. If my opinions are confuted by experiment and reafon, I will bow to conviction, and be one of the firft to abandon my theory. I folace myfelf, however, with the idea, that in an honeft and laborious fearch after truth, right or wrong, nothing is loft; and probably fomething may be gained. So comes this work into the world, without a ftring of capital letters attached to the name of its author. Thefe fortuitous advantages, however, have too little connection with a work of this nature to affect thofe
whofe good opinion alone I am folicitous to obtain. Like others, no doubt, it will be finged a little in its paffage through the ordeal of criticifm; for polifhed writing is neither in my power, nor do I think it proper upon a didactic fubject like this. A fimple perfpicuity has been my aim; and to be eafily underftood my earneft endeavour. The plates, though not elegant, will, I truft, be fully explanatory of my meaning : and a copious index will not only point out every fubject, but the particular parts of each, fo that they may be inftantly found. This index is alfo made a dictionary of fuch uncommon words as could not, without affectation, be omitted in a work of this nature.

CONTENTS
 OF THE FIRST VOLUME.

INTRODUCTORY LECTURE,

Containing fome general Ideas refpecting the Syftem of Nature - - - \quad page I On Ligbt and Fire.-Momentum of Light.-Ligbt the Caufe of Planetary Motion.-Repulfion of Light or Fire.-Repulfion explained by Experiment.-On Zodiacal Ligbt.-Planetary Motion.-On the Int fluence of the Sun's Motion on the Earth and Planets.-Solar Im-pulfe.-Planetary Diftances.-Preceffion of the Equinoxes.-On Fire. -Thermometer.-Repulfive Power of Fire.-On the repulfive Power of Fire.-On latent Fire.-Conductors of Fire.-On latent Heat.-On the Affinities of Fire.

LECTURE II.

Of the Particles of Matter, their Minutenefs, Hardnefs, Extenfion, Divifibility, Inertia, and Cohefion; and on Magnetifm
Affections of Matter.—Attraction of Cobefion.-Particles of Bodies of the Same Weight.-On Capillary Attraction.-Food of Plants.-On the Polarity of Matter.-On Magnetic Attraizion.-Magnetijm.Mifcellancous Obfervations.-On the Variation of the Magnetic Needle.-On the Dipping Needle.-Magnetic Amusements.

LECTURE III.

Mechanics
On Gravity.-On falling Bodies.-On Pendulums.-On the Centre of Gravity. -Tbe Mechanic Powers-Lever, Whecl, and Axle-Pul-
leys-Wedge-Inclined Plane-Sirew.-On Friction.-On the Wind-mill.-Tbe travelling Corn-mill.-Experiments to afcertain the Excellences and Defects of Wheel-carriages; from whence Deductions are made for the Improvement of Coacbes, Carts, Waggons, Ec.-Experiments on Coaches, Chariots, Curricles, Evc.-Experiments to afiertain the beft Proportions between the Heights of the fore and bind Wheels, Ecc.-Experiments to eftimate rubat the Draught of Carriages is on different Kinds of Roads, and on different Declivities. Mijcellaneous Obfervations on the Excellences and Defects of Wheel-carriages in general.-Improvements on Wheel-carriages Juggefted.

LECTURE IV.

On Chemiftry

On Acids - Alkalis - Solution-Diftillation-Sublimation.-On Affnitive Attraction. - Of Combufion - Salts - Earths - Metals -Minerals.-Vegetable Analy/is.-On Animal Analyis.-Chemical Ap-paratus.-Mijcellaneous Objervations and Experiments in Chemiftry.

LECTURE V.

$$
\text { On the Atmofphere - - P. } 225
$$

Mechanical Properties of Air.-Chemical Properties of Air--On Wind. -Air Guns.-Wind Guns.-On Sound.-Sympathy of Sound.

LECTURE VI.

Hydroftatics-Hydraulics - - P. 307
Of Specific Gravities.-Hydrofatic Balance.-On the Diver's-bell.On the Sypbon.-Conducing Pipes.-Of Pumps.-The Rope-pump. -Tbe Forcing-pump.-Boulton and Watts's Steam-engine, zuith the Cylinder in the Boiler.

INTRODUCTORY LECTURE,

CONTAINING

SOME GENERAL IDEAS

RESPECTING

THE SYSTEM OF NATURE.

SECTION I.

IN order to explain any art or fcience, I think it is ufeful to give fome outlines, or general ideas, of their principles, before particular parts are entered upon. On this account, a very unpopular beginning will be given to this work:-The philofopher will find fome documents to condemn, and fome perhaps to wonder at ; the ftudent will be perplexed before he is inftructed; and the critic will have plenty of matter for animadverfion, and perhaps for ridicule. But as I fhall advance nothing but what I believe to be true, and hope to demonftrate, it will promote the caufe of truth fhould any part be confuted.

I fet out with a perfuafion, that attraction and repulfion are the great acting principles of the universe. By attraction, I mean that tendency which the atoms of matter have to unite and form them-
felves into bodies; and by repulfion, the oppofing reaction of fire, in its combined, active, and latent ftates; or in its characters of electricity, heat, or light. The experiments, through the courfe of this work, will principally tend to the eftablifhment of this perfuafion ; and that light, heat, fire, and electricity, are but modifications of one and the fame principle.

I conceive the Sun to be the fountain-head of fire in our fyftem ; and that his light, when it reaches the earth, is only that fire in a greatly rarefied and mixed ftate; and which therefore, when condenfed by lenfes or mirrors, becomes real fire again. That light is matter, or material, cannot be doubted when we obferve the inflections it fuffers in paffing out of one medium into another, as out of air into glafs, or out of glafs into water, \&rc. That the particles of light repel each other, and fill all fpace, in a more or lefs diluted ftate ; that they are thrown off, or repelled, from the equatorial parts of revolving funs, which are recruited by receiving or imbibing light at their polar parts, from other funs ; therefore, that light exifts in the abfence of the luminous body, and is only put into progreffive motion by it. That (by what will be made probable hereafter) it proceeds from the Sun, elementary, or in the character of electricity ; but being obftructed in its paffage through an ill-conducting atmofphere, it mixes with the finer parts of terreftrial matter and becomes light; and what reaches the earth, unites with the groffer matter of the earth's furface, and becomes culinary fire. We have no conception for what purpofe the fun turns on his axis, if it be not to increafe this repulfion and momentum, by throwing off thofe particles of light centrifugally from his body, as Plate I. by which they are projected into infinite fpace in a more and more diluted fate, till meeting with light from other
funs of greater momentum, they mix, unite, and are turned into the ftronger ftream. For we fhall prove the fixed ftars to be funs ; that they turn on their axes like ours ; and no doubt project their light in the fame way. See Plate II. fig. 1. So thefe luminaries, difperfed through fpace at infinite diftances from one another, fill the univerfe with light of various colours; fome projecting a predominance of red, others of blue, and others of white, light. From the great diffance by which the heavenly bodies are feparated, the light of each muft become feeble before it reaches its neareft neighbour ; and not only be abforbed into the ftronger ftream, but much of it attracted into the body of that neighbour, at its polar parts. For the polar parts of each fun, having little centrifugal repulfion, its attraction in thofe parts will draw in vagrant and weak light from other funs, and thereby fupply and recruit continually the quantity thrown off at its equatorial parts. This idea may be rendered more familiar by Plate II. fig. 2 , where a a reprefents the projected light of the fun S, and c c its abforbed light. Hence no wafte or diminution of light or heat has been obferved in our fun ; or in the light of thofe other funs, the fixed ftars. By thus giving and taking, the whole univerfe is filled with light and motion! For, that a feeble light is capable of being abforbed, turned back, or retarded, in its motion, by ftronger light, is evident from the light of the ftars being loft in the fuperior fplendour of the fun; and from the feeble light of a common fire being put out, by the light of the fun. This effect, though fo common, may not, perhaps, have been accounted for on the above principles. We will therefore familiarife it by Plate II. fig. 3, where S, the fun, darting his more powerful rays againft thofe of the weaker fire F, turns them back, and, by oppofing their emanation, extinguifhes the fire. Many other examples will occur in the courfe of this work.

As the fun turns on an axis that inclines only 8° from croffing the ecliptic perpendicularly, his equatorial, or greateft centrifugal difcharge of particles, will be nearly in the zodiac, or track of the plancts. May not the planets be turned on their axes by this impulfe of light? I know that this fuggeftion feems like an attempt to revive the exploded vortices of Des Cartes: but this is not the cafe ; his vortex was made in an imaginary fubtil matter, the exiftence of which could never be proved. Light can be proved to be real matter; to have motion, and, of courfe, a momentum. Suppofe S the fun, and E the carth, Plate II. fig. 4 , and that the lines $a b c d$, Exc. reprefent rays of light iffuing centrifugally from the fun. A line from the fun's centre of gravity s, to that of the earth E, will fhew the direction in which the two bodies mutually attract each other ; or the line in which they would fall together, if no counteracting principle prevented it: that counteracting principle, I hope to prove, is light, fire, or electricity. The equal diftances of the lines which reprefent the rays, being agreeable to the equable diftribution of light through the zodiac, it may be feen that twice the quantity falls on one fide of the line of direction $s, 0$, as on the other, viz. $a b c$ and d; while e and f fall only on the contrary fide of the line of direction. Though this is an exaggerated proportion, yet in all the pofitions in which the earth ftands to the fun, during its amual revolution round him, it will be found that more rays fall on one fide of its axle and centre, than on the other. If a ball, therefore, fufpended in infinite fpace, without friction, or reffitance to motion, have a greater impulfe on one fide than the other, it muft turn on its axis. It is true, the momentum, or moving force, of light, has been found to be fo fimall, as to feem inadequate to fuch an effect. A fmall wire balance, nicely fufpended on a point, having a fquare inch of thin latten fixed at one end, was covered by the
Light the Cause of Planetary Mution.
receiver c, Plate III. fig. 9 , it was a little more than counterbalanced by a finall fhot, which refted on the projected plane a. The focus of a lens fourteen inches diameter, and twenty-fix inches focus, being directed upon it, the balance ws inftantly put in motion; and the fhot lifted from the plane. The receiver being clofe, this could not arife from the motion of heated air: but left that fhould have been the cafe, I had the air exhaufted on the air-pump, and on applying the lens as before, the effect was the fame. I then balanced one hundred pieces of horfe-hair, each piece of the fame length, on a nice beam, with one grain : one of thefe hairs lifted the flot: fo that the impetus of light on one and a quarter fquare foot of the earth's furface, may be confidered as equal to one hundredth of a grain: and by calculation equal to twenty tons on the whole difk of the earth. Mr. Mitchel, indeed, made the fame experiment, with great care and addrefs, with a concave mirror of three fquare feet furface, and calculates the momentum of light on a fquare foot of the earth's furface to be no more than the one thoufand eight hundred millionth of a grain. The experiment in both cafes is of too delicate a nature to draw any decifive conclufion from, except that light certainly has a momentum or moving force.

If light concentrated in the focus of a large burning-glafs can put a fmall balance into motion, or move a needle fufpended by a magnet ; or influence the tail of a comet, fo as to force it always oppofite the fun; and, what is fill more ftriking and demonftrable; make a pellicle of gold, molten in the focus of a large lens, turn on its axis, the fame way with the earth's diurnal motion, all the time the focus is kept upon it (fee Optics) :-May not its aggregate momentum be a balance to the earth's gravity towards the fun? and may it not be natural to fuppofe the earth's diftance from the fun.
was determined by the balance of thofe two powers ?-analogous to bodies on the earth, which have their tendency to abfolute folidity, counteracted by the repulfive power of light or fire, with which every body on the earth's furface is more or lefs united. But this is not all. If the impulfe of light be greater on one half of the earth than on the other, may not this alfo account for its annual motion round the fun, to produce the feafons? To prove that a diurnal motion, fimilar to that of the earth, may be produced by a centrifugal ftream of air, I fixed in a circular box the arms $a b c$, \&cc. Plate II. fig. 5 , turning on the centre n : thefe arms were of thin boards, and the box was clofe, except at the holes $s s$ to let the air in, and at the fumnel g to let it out. A thin glafs globe was hung by its centre m perpendicularly to the machine, by a fine thread. The arms being now turned fwiftly round by the handle r, a current of air flows through the funnel g, and the globe begins to turn round without being pufhed away. This I confider as fimilar in one fluid to what it may be in another ; and a power capable of producing a circular motion. But to give the ball both diurnal and annual motion, by a centrifugal current of air, I made the circular wooden box, Plate II. fig. 6, with oblique holes through its fide. This box being clofe at top and bottom, there was only the hole a to admit the mouth of a double-bellows to make the current of air equal. The glafs ball was hung by a very long thread, exactly over the centre a; this gave it a conftant tendency towards that centre, naturally reprefenting the gravitation of planets toward the fun. The ball being now placed by the fide of the box, and the bellows blown, the ball inftantly began to turn on its axis, and defcribe an oval circuit round the box. This oval circuit was more than I expected ; I had therefore the oblique holes bored very true, fufpecting that an inequality in them might occafion this inequality in the circuit:
ftill it was elliptical. Confidering that the fun's axis inclined 8° from a perpendicular to the plane of the ecliptic, it was evident that if folar impulfe was the caufe of the earth's annual and diurnal motion, it muft be lefs in one part of the earth's circuit than another, and of courle produce an oval rather than a circular motion. I had the plane of the ball's orbit inclined S degrees to the level of the box, and ftill the oval circuit was invariably produced, as it is in nature, viz. at the place where the folar ftream muft be moft powerful, i. e. when the earth is in the middle of it, near the time of the folftices; for the plane of the fun's equator cuts the ecliptic about the eighth degree of cancer, and the eighth degree of capricorn: and near thefe were the aphelion and perihelion of the ball, or its fartheft and neareft diftance from the repelling box. It may feem, that as the ball paffes the middle of this ftream twice in one circuit, it fhould have two diftant and two near approaches to the repulfive box. No: it ftill defcribes equal areas in equal times, and conforms to the law difcovered by Kepler, that a twofold projectile force balances a four-fold power of gravity. In Plate III. fig. 8 , this idea may be made more intelligible. Let S be the fun in one of the foci of the earth's oval orbit $A B$, with a rotation conceived on his axis from eaft to weft, in twenty-five days; and on an axis inclined 8° from a perpendicular to the plane of the ecliptic: this axis inclining towards the tenth degree of libra, or towards the point r; all which is agreeable to obfervation: the plane of the fun's equator, therefore, will crofs the plane of the ecliptic near the perihelion and aphelion of the earth's orbit; or, in other words, in thofe two parts of the orbit which are the neareft and fartheft from the fun, as s and u : for thefe two points are not at t, where the fun enters vs at mid-winter; or at w, where the fun enters $=$ at mid-fummer; for the earth is not come to its
nearelt diftance from the fun on the 21 ft of December, nor to its greateft diftance on the 21 i of June, but about eight or nine days later. The earth, therefore, croffing the folar ftream at thofe two critical places, viz. at s and u, muft have its orbit and motion affected by it. The manner in which the plane of the fun's equator crofles the ecliptic, may be better underftood by infpecting Plate II. fig. 7 , where $s s$ reprefents the plane of the ecliptic, and $u u$ a plane paffing through the fun's equator; fo t may reprefent the fun's axis, and the angle of 8° it makes with a perpendicular to the ecliptic, 12 . By a fection of this ftream, as Plate II. fig. 2 , a clearer idea of this hypothefis may be conceived; where the planet a is in the middle of the fun's equatorial ftream, and of courfe impelled to its aphelion or greateft diffance. But in the fituations $d d$, it is but partially immerfed in it; here the fun's attraction will, in a degree, overcome the repulfion of light, and draw the planet to its perihelion or neareft diftance.

The zodiacal lights, feen at the equinoxes, are alfo a proof that the earth croffes a ftream of more than ufual light at thofe times; and as all the planets move in this equatorial fream more or lefs, may not their diftances, motions, and eccentricities, be thence accounted for? The earth moves the fwifteft when it croffes the fiream at the winter folftice g, and gradually flower and flower, till it reaches the fummer folftice a; foon after which it again croffes the ftream, but from its greater diftance from the fun, and the flownefs of its motion, an acceffion of inertia or retardation has taken place, that is not eafily overcome by an increafing impulfe. The ftream alfo is weaker, as being farther from the fun than at the winter folffice. Hence the effect of this tranfit accelerates the motion of the earth but flowly: but aided by

Planetary Motion.

the increafing power of gravity, as it approaches the autumnal equinox, it acquires the acceleration neceffary to make a two-fold power of centrifugal tendency to balance, or rather overcome, a four-fold increafe of gravity. This motion in the planets feems not even yet to have come to a perfectly fanding medium; and it feems moft unequal in the moft diftant planets: Jupiter, according to Caffini, is accelerated half a fecond per year; and will be near 2000 years before he comes to the utmoft of that increafed motion ; when he will become retarded like an overfwung pendulum, and meliorate in time to perfect equality of motion. Appealing to the fact in nature, and as may be feen defcribed in any ephemeris, this acceleration and retardation is perfectly agreeable to the motion of the earth, and to that of the other planets, viz. that they defcribe equal areas in equal times, fig. 8*, Plate III. for all the fpaces $a b c d$, \&c. are equal to one another; the earth travelling from o to p in January, and only from q to z, in the fame fpace of time, in June. But if a thread could be carried with it, whofe end was fixed at the fun's centre, it would pafs over the fame quantity of fpace, in the fame time, in all parts of the orbit. This is not matter of conjecture, it is confirmed by the moft accurate obfervations, and noted in the Ephemeris, for every fix days throughout the year, for many years paft and to come. In fig. 8*, Plate III. it is only noted for the begiming of every month, viz. that the femidiameter of the fun on the firft of January, as meafured by a good micrometer, is $16^{\prime} .19,2^{\prime \prime}$; but on the firft of July, it is only $15^{\prime} \cdot 46,9^{\prime \prime}$. Why appears the fun lefs in July than January? All objects diminifh in perfpective, as we recede farther from them; and we are nearly one thirtieth of the fun's mean diftance from the earth nearer to him in January than in July. The bourly motion of the earth, in its orbit on the firft of Jamuary,
is $2^{\prime} \cdot 3^{2}, 9^{\prime \prime}$; on the firft of July it is only $2^{\prime} \cdot 23^{\prime \prime}$: fee fig. 8^{*}, Plate III. Why does the earth move fafter in January than in. July? Becaufe its near approach to the fun increafes its velocity; and it is alfo in the middle of the zodiacal ftream at that time. But to come more immediately to the point, let us ufe the very agent we conceive to be ufed by nature to produce thefe effects, viz. Light, or rather its principal ingredient Electricity. Stick a fmall needle, a, fig. 15 , Plate IV. in the light pith or glafs ball b (there being generally a fmall hole in an hollow glafs-ball, into which if a piece of cork be fixed, and the needle ftuck in it, they will both hang by the magnet m). If the metallic point p (being part of the prime conductor of an electrical machine) be electrified, an aura, c, will iffue from it, that will give the ball b a diurnal motion. The magnet here is only ufed becaufe it has lefs friction than a finall thread.

To produce both annual and diurnal motion by the fame caufe, let a fmooth brafs-ball a, fig. 16, Plate IV. have the wire b fcrewed into it, after it has paffed through the collar of leathers g : on the outer end of this wire is fixed the pulley n and knob m. The ball z is of hollow glafs, with patches of tin foil. ftuck on it to reprefent the eaftern and weftern continents of our globe; it refts on the point of the wire $i i$, which paffes eafily through its bottom; this wire is bent as in the figure, and is fufpended on the perpendicular needle e, fixed in the fand u : the globe z is balanced by the fhot s, fo that the whole may turn eafily on the point c. The ftand u fhould be infulated, by refting on a fmall glafs tumbler, or feet, fo that when the fun a is electrified by the knob m touching an excited conductor, the eclectricity may fiream from a to c, and electrify the ball z, and the wire which fuftains it. To imitate the fun's motion on his axis, a grooved wheel like n (but
larger) is fixed at a diftance, round which, and the wheel n, there paffes a tight filk cord, fo that the pully n and ball a may be turned with any degree of velocity; this motion and electricity being excited together, the ball \approx begins to turn on its axis, and revolve round the fiun a.-This apparatus is inclofed in the receiver of an air-pump, to fhew that thefe motions take place in vacuo, as well as in the air.

As I conceive the diftances of the earth and planets from the fun to be in a ratio determined by their denfities and quantity of furface, i.e. that a rare body with a large furface may be impelled farther from the fun, than a more denfe body with lefs furface; and therefore Jupiter and Saturn, thofe large bodies, are fo much more diftant from the fun than the Earth, Venus, and Mercury : let S, fig. 17, Plate IV. (a gilt or metallic ball) reprefent the fun, and be infulated on the folid glafs ftand m; and the light balls $a, b, c, \& c$. be of various fizes and denfities, agreeable to that of the earth and planets: thefe balls hanging by fmall filken threads centrally over the fun, will all tend towards his centre, cling round him, and naturally reprefent the power of his attraction. If now the fun be electrified, by the chain w (communicating with the prime conductor of an electrical machine), the balls $a, b, c, \& c$. will be difperfed according to their denfities and quantity of furface, and affume diftances proportionate to that of the earth and planets.

SECTION II.

On the Influence of the Sun's Motion on the Eartb and Planets.

IT may feem a little contradictory that the fun fhould both attract and repel. I conceive the light of the fun to be merely his atmofphere ;-an ocean of fluid fire that furrounds him, whofe particles repel each other, and are the caufe of repellency and elafticity in all other matter. But the body of the fun attracts like all other bodies, is a folid nucleus, perhaps black, and covered but thinly with his repulfive atmofphere; infomuch, that, by great emiffion, fome parts of that body may be left bare, and caufe thofe black fpots fo frequently feen on his face. Thofe fpots have always a dufky fhade round them, and appear hollow and indented when they pafs over the edge of the fun ;-circumftances favourable to this opinion. By them we learn, that the fun turns on his axis in twenty-five of our days and fix hours. That this equatorial emanation from the fun muft diminifh in its force by diftance (perhaps as the fquare of that diftance) is probable, from the neareft of the planets, Mercury and Venus, being thrown much farther out of the plane of the ecliptic than the fuperior planets, Mars, Jupiter, Saturn, and the Georgian planet. The inclination or greateft latitude of Mercury being $7^{\text {D. }} 0^{\text {r. }} 0^{\text {s. }}$

Venus $-\quad-\quad 3$	23	35		
Mars	-	-	51	0
Jupiter	-	18	56	
Saturn -	-2	19	50	
Georg. Sid.	0	46	20	

Now as the greateft diftance, north or fouth, that any planet departs from the plane of the ecliptic, is not more than feven degrees, and as the fun's inclination to that plane is eight degrees, it feems to follow, that all the planets of our fyftem muft be more or lefs immerfed in his equatorial emanation ; and that it is that ftream that keeps them in their orbits. Not that we conceive, that it is only from his equatorial parts that light is projected ; it muft be alfo projected from the regions towards his poles, but certainly not with the fame vigour. If a large hollow globe, perforated with numberlefs little holes, were filled with water, and turned fiviftly round, water would fly from all parts of it, no doubt centrifugally; but, certainly, from its equatorial parts with the moft force: fo light comes to us from all parts of the fun, or otherwife he would not appear round. A pleafing reprefentation of this attraction and repulfion may be made in a jet of water. b, fig. 13, Plate III. is the fpouting pipe, and a a fmall wooden ball immerfed in the jet. This ball will turn on its axis like a planet, and preferve its fituation for a long time, if the jet be equal : the jet reprefenting the repulfive power of folar light; and the tendency which the ball has to fall, the influence of attraction. A ball was made oblate (or like an orange), to reprefent the earth and Jupiter ; when it was immerfed in the jet it immediately turned its protuberant fide towards the ftream, and revolved in that direction. But to come nearer to the point, let the pipe b be a fharp metallic point ftuck perpendicularly on the prime conductor of an electrical machine: when the machine is in motion, if a fmall pith-ball be gently dropped on the point, it will be inftantly raifed above it, and turn round by the electric aura like the ball a.

It is an excellent rule in philofophifing, to admit no more caufes
than what barely account for the phænomena under examination. If in the courfe of this work it can be proved that light, fire, caloric, phlogifton, electricity, \&cc. are but modifications of one and the fame principle, viz. electricity, the difficulties attendant on our refearches into nature will be greatly reduced.

The materiality and momentum of light being proved, may not the motions and diffances of both the planets and their fatellites be rationally accounted for mechanically?

If, for infance, the planet Jupiter be made of materials fpecifically lighter than thofe of the earth (which the fwiftnefs of his motion on his axis ftrongly indicates), his gravity towards the fun would be lefs, in proportion to his quantity of matter; and from his greater furface he would be more repulfed by the ftream of light; and therefore thofe two powers would not balance each other, but at a much greater diffance than the earth is from the fun. Saturn is alfo next to Jupiter in fize, and therefore fubject to great repulfion ; from whence may arife his rapid rotation on his axis, and his ftill greater diftance from the fun. The fmaller planets are all nearer to the fun, and muft have greater denfity and folidity to bear the heat incident to their fituation; of courfe their gravity will combat a ftronger repulfion ; and they will be drawn nearer to the fun before the balance between thofe two powers will be affected.

Mars being our next neighbour, he has many coincidences with the earth: he turns on his axis in nearly the fame time; that axis inclines like that of the earth; and his orbit croffes the folar ftream near the fame places with the earth. This laft coincidence, pro-
bably, occafions the other two. As the materials of which he is formed appear to have a chemical rejection to red light (which feems the caufe of his dufky red appearance), that part of light being the moft powerful of any of the feven colours of which light confifts, why may he not have fo much more impulfe from red light than from the green light, which our globe rejects, as to make their diurnal motions nearly alike, and balance his greater diftance? for Mars is fituated one third farther from the fun than the earth.

Treating here of general matters (to give an elementary idea of this hypothefis); the details and particulars muft be poftponed. The planet Jupiter revolves on an axis nearly perpendicular to the plane of the ecliptic; being therefore in a more diffufed and diverging part of the fream of light than the inferior planets; both attraction and repulfion will act more equally upon his body thian if he were nearer, and more expofed to the firft impulfes of the folar ftream: hence his eccentricity is lefs, his motion more equal, and his oblate equatorial protuberance more immediately in a line with the two powers of attraction and repulfion, than that of any other planet.

The oblate protuberance of the earth lies oblique to the two influences, particularly at the folftices. Muft not the folar impulfe, therefore, be greater in fummer on our northern hemifphere, than on the fouthern? and, in winter, greater on the fouthern, than the northern hemifphere? and thus force the earth's axis progreffively more and more towards a perpendicular (as is well known to be the cafe), and prodice the preceffion of the equinoxes? Thefe effects may be better underftood by an infpection of fig. 12, Flate III.
where the fouthern hemifphere s, of the earth c, will be found more immerfed in the folar ftream than the northern : and in fummer, when the earth is at a, the northern hemifphere n will partake of both the influences more than the fouthern. Muft not thefe inequalities alter the pofition of the earth's axis, and make it recede farther and farther from its direction to the polar far, as is known to be the fact? and if fo, muft not the plane of the earth's equator cut that of the ecliptic progreffively more and more towards the weft, in the contrary order of the figns, and thereby produce the preceffion of the equinoxial points?

As the impulfe of light muft be greater upon the earth and planets in perihelion than in aphelion (or at their neareft than their greateft diftance), of courfe the earth, by moving in its orbit flower in fummer, will have its meridians come fooner to the fun every day than in winter; and account for the nearer approach to equality of apparent and equated time in fummer than in winter; which is alfo the fact.

Thefe phrenomena, I prefume, may be as rationally accounted for by the theory of impulfive light, as from that of centripetal and centrifugal forces. For though, by both theories, the earth muft move fwifter in perihelion than in aphelion, the diurnal motion is not at all accounted for by the latter theory *. Now if (as has been proved) there be a greater impulfe on one fide of the earth than on the other; -and that alfo agrees with the way it actually revolves,

[^0]viz. from the weft to the eaft;-and if the impulfive momentum is lefs in aphelion than in perihelion, it follows that not only the earth's amnual progrefs in the ecliptic muft be retarded, but alfo its rotation on its axis. For, though the proportional difference between the impulfe of light on one fide and on the other, mult be the fame at whatever diftance, yet the fum of the two impulfes will be lefs at a greater, than at a finaller diftance ; and account for folar and fidereal time being nearer equality in fummer than in winter, and that the diurnal rotation is alfo fomewhat flower.

Thefe obfervations are advanced here only to give a general view of that important principle, light. But it muft not be confidered yet as in either an aftronomical or optical point of view. Thefe two fubjects will be feparately treated at large. We fhall now confider light or fire in the various effects it produces, in uniting, forfaking, decompofing, or rarefying bodies, here on earth.

SECTION III.

On Fire *.

IN the order of nature we find oppofing or antagonift principles in a ftate of perpetual warfare. The centrifugal tendency of the

[^1]planets is faid to be a contention with the centripetal force, that never ceafes for a moment ; for Nature never fleeps. The fun makes war upon the inertia of the earth; and, in fpite of its fluggifh nature, makes it to turn on its axis, perform its annual journey, and to bring forth trees, fruit, and flowers. Every animal mufcle has its antagonift mufcle : paffion is checked by reafon *: and no two enemies are more inveterate than heat and cold, action and reaction, buoyancy and gravity, \&cc. \&cc. But of all oppofing or antagonift principles, none exhibit fo general an enmity as fire and attraction. Thefe two enemies are in a ftate of unceafing warfare: attraction drawing the particles of matter into a clofer and clofer union ; while fire (or caloric, in the language of modern chemiftry) is ftill ftriving to fet thofe particles more and more at a diftance. Hence it is faid, that heat expands all bodies, and that cold contracts them; that is, cold affifts attraction in overcoming the repulfive power of fire: for we do not confider cold as an agent or a body, it is but a name we give the abfence or fuppreffed power of fire. Not that we confider fire as totally abfent, or fuppreffed, even in the coldeft bodies; for pofitive cold, or a total abfence or abftraction of fire, camot be proved to exift in nature.

Whether fire, light, and electricity, are modifications of one and the fame principle, will be confidered hereafter ; at prefent we fluall only inveftigate its property of expanding all bodies it attacks, or is united with. 1ft. An iron bolt that would eafily pafs through a ring, will fick faft in it after being heated a little in the fire. 2 dly . If the bulb a, fig. 24 , Plate V. be half filled with fpirits of wine,

[^2]tinged with cochineal, and grafped with a warm hand, the air b will fwell and prefs the liquor up the tube d, fo as to make it run out at c. 3 dly. Quickfilver is peculiarly fufceptible of expanding by heat and contracting by cold, and is therefore ufed for thermometers. a, Fig. 14, Plate III. is a bulb blown at the end of a glafs capillary tube, which is open at b; if the bulb a be heated nearly to rednefs, the air will be fo expanded as to leave the bulb a a vacuum; if then the end b be dipt in quickfilver, the preffure of the atmof phere will force the quickfilver into the bulb, and fill both it and the tube c. If the bulb now be wet, and expofed in a frofty night, fo that the water be frozen, the quickfilver will fall down the tube to d, which is called the freezing point, and where it muft be fo marked on its fcale. The bulb is then expofed a few minutes in boiling water; this will make the mercury rife to g, where another fcratch muft be made on the fcale, which is called the boiling point. We are now in poffeffion of a fcale for all the degrees of heat, from ice to boiling water; (when the water boils, no increafe of fire can make it hotter in an open veffel). The fpace between c and d muft now be divided into one hundred and eighty equal parts, and thirty-two more of the fame divifions continued below the freezing point, if the tube will admit of it: fo that o is extreme cold; thirty-two, the freezing point; fifty-five, temperate heat; feventy-fix, fummer heat; ninety-eight, blood heat; one hundred and twelve, fever heat; at one hundred and feventy-fix fpirits boil ; and at two hundred and twelve water boils. This is called Fahrenheit's fcale, from the name of the inventor.

Fourth, The pyrometer is an inftrument for meafuring the proportional expanfion of different metals by the fame degree of heat. Bars of different metal, of the fame length and thicknefs, are ex-
pofed in boiling water, fixed at one end, but operating on micrometers, or multiplying wheels, at the other, by which an index fhews the proportional expanfion between one metal and another.

2. Hard fteel		-	-				
3. Iron -	-	-					
4. Copper							
5. Brafs -	-	-					
6. Fine Pewter	-	-	-				
7. Grain Tin	-	-					
8. Lead -	-	-	-				
9. Zinc -		-	-				

So zinc has the greateft, and glafs the leaft expanfion, by the fame degree of heat.

Fifth, a and b, fig. 18, Plate V. are two glafs bulbs united by the tube c, and balanced on a point, d. This apparatus ftands before a fleet-iron cafe that holds two hot heaters, n and o. In a is contained a red-tinged quantity of fpirits of wine ; and the fpace b is devoid of air, or a vacuum. When a is near the heater n, the liquor in it will be rarefied into fteam, which rifing to the top of the bulb, forms fuch a reaction on the furface of the fluid, as forces it up into the bulb b, which foon becomes heavier than a, and it falis down to a; then are the fpirits of wine forced up into a as before, and fo on alternately: this force and action may be made to work two pumps, r and s. But the intention of the experiment is to fhew the repulfive force of active fire; for b being lifted out of the power of the heater o, and a expofed to the action or heat of n, the
two ends rife and fall alternately, becoming levers to work the pumps, r and s.

Sixth, The xolipile is another inftrument to fhew the repulfive power of fire: it is a large copper fphere, with a fmall tur (almoft capillary) joining to it, fee fig. 19 , Plate V. at a. This veffel being a little heated, and its tube immerfed in water, or fpirits of wine, the preflure of the air will foon force the fluid into it. If then it be placed over the carriage fire d, the fteam will be fo violently forced out of the tube c, that by the reaction given to it by the air, the whole carriage will be forced backwards in the direction $g h$.

Seventh, If a glafs bulb, fig. 20, Plate V. be filled as above with fpirits of wine, and inclined by the handle b, fo that the fpirits do not cover the end of the fmall pipe d, while a candle rarefies the fpirit: and if then the handle b is lifted up, fo that the fpirit covers the end of the pipe d, the fluid will be forced through the candle c, fo as to produce a cafcade of fire, projected to a confiderable diftance. What is this, but the fluid rarefied into fteam by heat, fwelling, and thereby preffing the fluid through the pipe d ?

SECTION IV.

On the repulfive Power of Fire.

THE fun acts upon the inert matter of our globe; and, by heating its furface, makes even blocks and fones fwell by day, and
cold contracts them by night. Its active fire, uniting itfelf to water, aflifts the rife of vapour, and replenifhes the atmofphere with rain. Heat qualifies all menftrums to diffolve the matters to which they have affinity with additional powers:-falt, fugar, tea, refins, wax, \&:c. diffolve in hot fluids, much eafier than in cold. Fire is the moft powerful agent in the decompofition of bodies. It is the only effential fluid in nature, and the caufe of fluidity in other bodies, by feparating their parts: for, as bodies become fluid by the application of fire, fo fluids preferve their fluidity by the fire they contain. Hence even air itfelf might become folid, if deprived of the caloric, or fire, it contains; as bodies of the moft difficult fufion become fluid, when penetrated by a fufficient quantity of the particles of fire. All bodies become hot, by the approach of ignited bodies and by friction: we find, however, that light, heat, and the electric fluid, have fo many properties in common with fire, that we foruple not to think, and hereafter hope to prove, they are all but modifications of the fame principle. Rubbing, or friction, in all bodies, produces heat and electricity; and both thefe dilate bodies, help vegetation, germination, evaporation, motion of the blood, the growth of the foctus, and the hatching of eggs. Heat and electricity both reduce and melt bodies; and bodies that receive heat with difficulty, receive electricity fo, \&cc. Is it not more than probable, that the rays of the fun are diluted fire (nay, perhaps, electric fire)? May not the velocity with which they proceed from the fun prevent their abforption by the air, in their paffage through it? for perfectly tranfparent bodies receive no heat from folar light. And as all bodies have more or lefs affinity to fire, may not this dilated fire be abforbed by various bodies, and lie in union or a concrete form in them, till called forth from them by friction, combuftion, or ftronger affinity? Experiments that favour
this hypothefis are: 1ft. Rays collected in the focus of a burningglafs, produce, on opaque bodies, the moft intenfe heat. 2d. Living vegetables imbibe light (as nutrition) from the air, and part with it back again into the air, in the act of combuftion, boiling, or putrefaction (for rotten wood, putrid filh, the ignis fatuus, indeed all animal and vegetable fubftances, are luminous while decompofing by putrefaction) ; which is but parting with the inflammable principle, that was a conftituent part of thefe bodies while in health. 3d. Bodies in the act of delivering fire to the air, or any other affinitive menftruum, are univerfally hot; hence the heat of a common fire, inflamed gunpowder, \&c.- the heat of effervefcent mixtures, fuch as diluted vitriolic acid and iron filings - copper and diluted nitrous acid-iron filings, water, and fulphur, \&ic.

This principle (called caloric in the new language of chemiftry) is the grand antagonift of the attraction of cohefion. Thefe two oppofing powers keep nature in a ftate of perpetual motion. When the attractive force is ftrongeft, the body continues in a ftate of folidity ; but if, on the contrary, heat has fo far removed the particles of it, as to place them beyond the fphere of attraction, they lofe their adhefion, and the body becomes fluid. Water, when cooled below 32° of Fahrenheit's thermometer, becomes folid, and is called ice. Above that temperature, its particles not being held together, it becomes liquid ; but when raifed to 212°, its particles give way to the repulfive power of fire, and, flying off, affume an aëriform ftate, called fteam : the fame may be affirmed of all bodies in nature. But as no veffel can contain this fubtle fluid, as it efcapes through every thing, it is difficult to define it but by its effects: the preffure of the atmofphere checks it in part, and prevents fluids from flying off, in fteam or gas, along with it. By fur-
rounding bodies, and being interfperfed among the particles of bodies (according as thofe particles are arranged or difpofed by that polarity which takes place when a body paffes from a fluid into a folid ftate), the body is faid to have a capacity for receiving, retaining, or parting with fire. When this repulfion overcomes the adhefion of fluids, and the preflure of the atmofphere, the fire flies off with the vapour, and the fluid is cooled: hence the cold produced by evaporations of all kinds, ether, beer, \&ic. when in an exhaufted receiver, finks the thermometer. Spirits of wine boil in vacuo, by the heat of the hand, producing intenfe cold. Snow and fea-fait, mixt, attract heat from neighbouring, or touching, bodies, producing ice in an hot room ; and by Glauber and ammonical falt, with fpirit of nitre, quickfilver may be frozen into a hard metal. Hence we fee why fire, going into a latent ftate, produces cold ; and, into an active ftate, heat: why the blood, in an healthy flate, retains the fame heat in cold and hot weather. For evaporation cools both the earth and the human body.

All elaftic bodies are combuftible. Is not fire, therefore, the caule of elafticity? Fire in all bodies, and added to all bodies, increafes their elafticity. Why do corks fly out of bottles of liquor ftanding near the fire? Why do veffcls nearly full of any fluid boil over when fet on an hot fire? Why do the ftraight bars of a firegrate crack and make a noife as if fomething was breaking all the while the firc is increafing, and alfo when it is diminifhing, but expanfion and contraction? What makes an harpfichord rife in its pitch in a room without a fire; and fall below the pitch, when a fire is in it? Why do the back and leaves of this book bend when I read by the fire? Why are my bones more liable to break in cold frofty weather, than in any other kind of weather? Why
does my new fhoe pinch me when I fit by the fire? Why does a roll of brimftone crack and break by only holding or grafping it in my hand? Why is the iron-hoop of a tub put on when it is hot, but that it may hold fafter when cold? When you ftand before the fire, why fhould the watch and money in your pocket become hot, while the pocket is cool? Why does water chryftallizing in froft, burft containing veffels? high-roads? trees? pipes? cifterns? nay, even rocks? Thefe, and a thoufand more inftances may be adduced to prove that heat expands all bodies, and cold (or the diminution of heat) contracts them: for the fwelling of water, when freezing, is no contradiction to this doctrine: for water in the act of chryftallizing inclofes more pores or fpaces than in its fluid ftate, and of courfe burfts the containing veffels, \&cc.

Why am I warmed by fitting clofe to the fire? or, why is the air near the fire hot, when the air is known to be a bad conductor of heat, and neither to receive or retain it but with confiderable difficulty and refiftance? Fire in the air is latent till put into motion by active fire, fuch as burning coals, wood, candles, \&c. Emanating particles of fire repulfed from the fe, excite the latent fire in the adjoining air, and put it in motion, thereby making it become fenfible heat. This excites in my body the already active fire to a greater degree of activity, and gives me an bigher Senfe of heat than is natural in a cool atmofphere. Hence a fort of warfare takes place near a fire, the emanating particles of which are pufhing from the fire, while the colder and heavier air is perpetually pufhing towards it. Hence alfo the reafon why the greateft heat produced by a fire is immediately above it, in a chimney, becaufe there the current of air and the current of fire are both in the fame direction. Earthen pipes therefore placed above a fire
(as in my patent-ftove), feparate the heat from the finoke, and fend the air that paffes through them into a room hot, and unpolluted by paffing through metal pipes.

Thus fire, like the other parts of nature, is perpetually ftriving at an equilibre : it cannot be confined in any body while that body touches, or is in the neighbourhood of, colder bodies, but it will rufh out by its natural elafticity to.join the colder body, till both become of the fame temperature. This effect takes place in vacuo as. well as in the open air. The only way therefore to confine fire is, to furround it with bodies that are hotter than that body with which it is united,

SECTION V.

On latent Fire.

FIRE going into a latent ftate, may be reprefented as proceeding from a circumference to a centre, as a, fig. 21 , Plate V. or, as electricity paffing out of a natural into a negative ftate. And fire going into an active, from a latent ftate, may be reprefented by b, as an emanation proceeding from a centre to a circumference, and alfo as electricity growing pofitive: for all bodies throwing out elementary fire are hot; abforbing it, cold.

Some things in nature have better capacities for receiving fire, uniting with it, or conducting it, than others. If I put the end of
a rod of glafs, and a rod of iron of the fame length and thicknefs, together, into the fire, the iron, at its oppofite end, will foon become too hot to hold, while the glafs will betray no figns of heat. We fay, then, that iron is a better conductor of heat than glafs. 2d. I take a piece of iron in one hand, and a piece of wood in the other; the iron feels cold, and the wood warmer: I try their temperature by the thermometer, and find them both of the fame heat! How is this?-The iron has a ftrong affinity to fire, conducts the fire from my hand much fwifter than the wood, and hence gives me a more lively fenfe of cold. 3d. I take up a warm poker in one hand, and the piece of wood in the other: the wood now feels colder, becaufe my hands are warmer than the wood, and colder than the iron ; the iron is, therefore, in the act of communicating an additional quantity of fire to my hand, and the wood depriving it of a portion of its natural quantity: for all nature ftrives at an equilibrium, while the great agents, fire and attraction, are continually at work to deftroy or difturb it. 4th. Why do I clothe myfelf in wool?-Becaufe it is a bad conductor of heat, and retards its efcape from the body. I make myfelf a muff of fur, becaufe it is fill a worfe conductor of heat than wool. For fheep are natives of a temperate climate; but bears and ermine of the coldeft :hence we find the clothing of animals in the torrid zone, hair-in the temperate zone, wool-in the frigid, thick fur. Linen conducts heat much better than wool; and hence its coldnefs, when applied to the fkin, and its lefs abforbent powers of the moifture of the fkin. Wool is therefore, perhaps, a more wholefome clothing. This power feems to depend on the texture of bodies; for fpongy bodies, fuch as wool, feathers, \&c. touch in fo few parts, that they abforb heat from the bodies of animals flower than bodics that touch?
with a greater number of parts. Befides, wool and fur inclofe a great quantity of air, from their open, porous nature; and air, as well as. water, is a bad conductor of heat. 5th. I take this glafs bulb in my hand, fig. 22, Plate V. and hold it inclined as in the figure : the fluid, rarefied into a fteam by the heat of my hand, is forced up into the upper bulb; but as foon as it difappears from the lower bulb, and begins to boil in the upper, an intenfe degree of cold feizes my hand. Why ?-The fteam flying off from the inner furface of the lowver bulb, takes along with it a portion of the fire in the furrounding bodies (whether in an active or a latent fate), and induces on my hand the fenfation of cold. For the lefs heat that is neceffary to bring a fluid into the fate of vapour, the more intenfe is the cold it produces. Hence, to wafh the hands in æther, would benumb them more than fnow. 厄tleer applied to an inflammatory head-ache, cools and gives it eafe ; applied to the root of the nerves behind the neck, ftops a bleeding nofe, \&rc. If the bulb of a thermometer be dipt in æether, fpirits of wine, or any fluid that eafily evaporates, and then expofed in the air, the quickfilver will fink a few degrees; for the fluid on the bulb flies off in vapour, and carries with it a portion of the latent fire of the quickfilver. 6 th. Hence evaporation cools the earth, the fea, and even the human body; for the blood, in health, is no hotter in a warm than a cold climate ;-as may be proved by putting a thermometer under the arm, in various parts of a long voyage ;-for heat caufes perfpiration, and perfpiration is evaporation, which carries off fire as faft as it is induced by the hotteft fun : and hence the equal temperature of the blood in hot or cold climates.

SECTION VI,

On latent Heat.

1ft. IF two bodies of the fame kind, but of different temperatures, be brought into contact, they will foon acquire a common temperature, and the quantity of heat in each will be equal : fhew ing that the hotter body has imparted half its furplus of heat to the other. The bodies, therefore, to which we apply the thermometer, fhould be large; fo that the heat it gives out, or receives, may not fenfibly affect their temperatures.

2d. The capacity of bodies for retaining fire, or heat, is greateft in the vapourous ftate, lefs in the fluid, and leaft of all in the folid ftate. For all bodies are fufceptible of thefe three ftates. Exam-ple.-Water below 32 of the thermometer is folid; from 32 to 212 it is fluid (or in a flate of fufion); at 212 it flies off in vapour. Water is kept in its fluid fate by the preffure of the atmofphere ; but that preffure is overcome by the repulfive force of fire, when its heat amounts to 212 ; and then, in the gafous ftate, the fire is carried off as faft as it can be adminiftered to it : for boiling water, in open veffels, cannot be made botter by the greateft increafe of beat. Ex. 2.-Crude iron, at 130° of Wedgewood's fcalc, becomes fluid; and the focus of a large lens will difperfe it in the character of gas.-So it is with all other bodies.

3d. All bodies abforb heat, or fire, by a kind of chemical affinity; fome in greater, and others in lefs abundance; and more in fluids than in folids : and yet they fhall be of the fame degree of fenfible heat. If a fponge and a piece of wood be immerfed in
water, the fponge will foon be faturated with water; the wood not fo foon, nor will it contain fo much. We fhould fay, then, the fponge has the greater capacity for imbibing water, though on its furface it is not more wet. So it is with different fubftances attraćing fire ; fome imbibe more, fome lefs, yet all may be equally warm. If ice be put in water, the water will be brought down to the temperature of the ice, viz. 3^{2}; and will continue at that temperature (though the water and ice are placed over a fire), till the ice be diffolved. What becomes of the fuperfluous fire? Doubtlefs it is abforbed by the ice, till it is all melted. So when the fluid is forced into vapour by an intenfe fire, that vapour is never hotter than 212 , the boiling point ; becaufe the vapour abforbs the fuperabundant fire, and carries it into a latent fate; -a flate that does not affect the thermometer. But fuppofe a piece of ice cooled 20° below the freezing point, and a thermometer fuck in it, and both expofed to a hot fire; the thermometer will rife very uniformly till it comes to the freezing point 3^{2}, and there make a full fop, till the ice is all liquified, and the fire will feem to have loft its faculty of heating. But after this, the thermometer will rife regularly, till the water becomes heated to the boiling point, viz. 212, and then it will become fationary again.-What is this but two ftages of the abforption of fire?
4.th. If equal quantities of frozen and fluid water (each at a temperature of 3^{2}) be expofed over a fire, the water will become heated to 162 , before the ice is all melted, the ice preferving the temperature of 3^{2} during the whole time; fo that the 130° of extraordinary heat produced no other effect on the ice but to render it fluid. For bodies paffing from a fluid to a folid fate univerfally emit a quantity of heat; as may be feen by applying a
thermometer to water in the act of freezing, which will be found feveral degrees warmer than the air about it. So, vice verfa, when bodies pafs out of the folid into the fluid fate, they fteal from the neighbouring bodies a portion of their natural fire, and leave them cold. Snow, or ice, and falt, liquifying together, have their capacity for the reception of fire fo increafed, that they draw it from all the furrounding bodies. Hence veffels containing cream, water, \&c. immerfed in this mixture, will have the cream, water, \&c. inftantly converted into ice. Nitric acid poured on ice (even near the fire), will produce the fame effecit. And folutions of Glauber and ammoniacal falts, in thin glafs veffels within one another, have frozen quickfilver, and made it an hard and ductile metal. But this, Nature has done at Peterfburg and Hudfon's Bay, in a cold 39 degrees below zero, or the cold produced by a mixture of falt and fnow.
$5^{\text {th }}$. Fire (being a conflituent part of bodies, inherent in, and latent, till called forth by combuftion, fermentation, change of capacity, \&cc. into an active fate, and capable of affecting the thermometer) is not perceptible to our feeling in its combined or neutralized ftate. But if the capacity of the body which contains it be altered, it will foon become fenfible. This piece of iron feels cold in my hand ; I lay it on an anvil, and beat it with a hammer, and it becomes hot; and if the ftrokes be continued for fome time, it will become red hot. Why ?-Its capacity to retain fire is altered ; the parts of the iron are forced into a clofer union, and the latent fire is fqueezed out, as water out of a fponge. In reality, the whole of the heat produced by friction or hammering is not altogether afforded by the body itfelf; becaufe, as the interior fire becomes developed, the external air acts upon the body, calcines or
or inflames it: and the air itfelf gives out heat during its fixation. Fermentations, and all changes in bodies, qualify them to receive or expel more or lefs fire, and hence many chemical operations produce fometimes cold and fometimes heat. 2d. I force air into the ball of an air-gun; the ball grows warm, yet there is neither friction nor compreffion induced on the ball:-no, it is the condenfed air within, whofe latent fire is fqueezed out, and communicated in an active ftate to the containing ball. 3d. The Indian rubs two dry fticks together, and they ignite. The wheels and pinions of fwift-moving machines take fire. A horfe-fhoe has its fire beat out by the pavement; and flint and fteel lend their aid to deftroy mankind. Fire is contained in a quiefcent fate in all thefe : rubbing or friction alters the texture, and condenfes the parts of bodies, fo as to force out their latent fire, and make it fenfible. Even water, furrounding the borer of a great gun, has been made to boil.

Fire, or caloric, is difengaged fometimes in a ftate of liberty, and fometimes in a ftate of combination : it always endeavours to obtain an equilibrium. It is difperfed among bodies unequally, and according to the degrees of affinity it has to them. Metals are eafily penetrated by it, and tranfmit it to other bodies with equal facility. Wood and animal fubftances receive it to the degree of combution ; liquids until they are reduced to vapour. Ice, and all bodies abforb heat during their liquifaction. Heat (that quality of fire) is fometimes difengaged in a fate of fimple mixture, as in the phenomenon of vapours, and of fublimations, \&xc. Water' and fire unite with fo weak a combination, that as foon as the fire ceafes to be urged, and the compound is left quiet in air, the fire abandons the vapour, which returns to its fluid fate. Evaporations con-
tinually carry off with them a portion of fire, and cool the bodies they fly from; hence the blood is cooled by perfpiration, the earth by evaporation, \&cc. \&c. Fire in many cafes contracts a true chemical union with the bodies which it volatilizes, and fo perfectly, that the heat is not perceptible, being completely neutralized by the body with which it is combined : in this fate it is called latent heat, or latent fire. But, can fire, or flame, take place where no latent fire exifts? If fire can be forced out of bodies that never were near where that principle exifted; from whence could their tendency to combuftion arife, but from light, which all bodics on the earth's furface are continually imbibing from the fun, and from the other concomitant of combuftion, the air, which continually furrounds thofe bodies? For what is combuftion, but a difengagement of light from the combuftible bodies with which it was united-provoked and excited thereto by the heat or ignition of neighbouring combuftibles already in a fate of ignition?

SECTION VII.

On the Affinities of Fire.

Ift. FIRE, fo chemically united in bodies, may be decompofed, or feparated from them, by various means; fuch as more powerful affinities, fermentation, effervefcence, breathing, \&c. for it has its chemical affinities, as well as the more grofs bodies of the chemifts. Its ftrong affection for metals will be fhewn hereafter; but its
extrication from the air we breathe, and the food we eat, more immediately affimulates with our prefent fubject. We are inftructed that the air probably confifts of three ingredients in its unadulterated ftate, viz. oxygen gas, or vital air (confituting about one third of its mafs) ; azotic air ; and fire. Air taken into the lungs, undergoes a decompofition; much of the vital part uniting itfelf with the blood: the azotic part is thrown out, with a quantity of fixt air (or carbonic gas); and the latent fire is let loofe in the lungs, and carried by the blood, in an active ftate, through every part of the body, producing animal heat. The decompofition of our food in the ftomach alfo extricates a quantity of latent fire, which, joining that developed in the lungs, gives that fteady warmth to living animals, unknown to the inanimate parts of nature: and hence animals without lungs, are of the fame temperature as the mediums in which they live; as fifh, frogs, \&c.

2d. That bodies are not difpofed to draw fire into a latent ftate, until they arrive at their melting point; nor fluids to part with it, until cooled to a certain degree; will be proved hereafter by many experiments; and may at prefent be evinced by the flownefs with which ice and fnow melt when a thaw comes on, and the heat of the air is far above the freezing point: this abundant heat is abforbed by the melting ice, and prevents the country from being deluged by fo rapid a thaw as the warm air would feem to indicate. It is owing to this, that ice is preferved in ice-houfes, and fnow on the mountains, even in fummer heat. Water, at reft, may be cooled feveral degrees below the freczing point, before it will congeal, as may be feen by a thermometer immerfed in it; but if touched with the end of a wire, a bit of ice, or if the veffel be agitated, in an inffant it becomes folid. If the thermometer be fill in the
water, it will inftantly rife up to the freezing point; and prove that a quantity of latent fire has emerged from the water.

Thefe few examples will fuggeft more; and fhew by what fimple caufes the greateft and moft wonderful effects of nature are pro= duced!-They lead us by degrees to the firft caufe, the Author of fuch admirable uniformity, amid fuch infinite variety!
\qquad

LECTURE II.

Of the Particles of Matter, their Minutenefs, Hardnefs, Extenfion, Divifibility, Inertia, and Cobefion; and on Magnetifm.

SECTION I.

PHILOSOPHY, like the fciences, has its firf principles: matter and its properties are the objects of its refearch. By matter we mean every thing folid or fluid in nature, and we conceive this matter to be made up of particles fo infinitely fmall, as not only to efcape the fcrutiny of the higheft magnifying powers in glaffes, but that even imagination itfelf is incapable of forming any idea of the fize of an original particle of matter! When we have reduced matter to the moft impalpable powder, we are far, very far, from the atoms which compofe that powder. I diffolve a fingle grain of copper in an ounce of diluted nitrous acid : this folution will cover 1000 fquare inches of bright iron completely with a fkin of copper, or impart a green colour to a gallon of water. One pound of gold is capable of covering a wire that will circumfcribe the globe! Mufk, affa-foetida, camphor, and many other effences, will exhale for weeks, and throw off their particles to the diftance of feveral yards, without lofing any fenfible weight! Nay, Lewenhoeck difcovered more living animalculx in the milt of one fingle cod-fifh, than there are men, women, and children, on the face of
the earth! We deal not in thofe fubtilies, where the whole matter of the univerfe is fuppofed capable of being compreffed into the fize of a walnut; or where an inch of common matter may be extended to the fize of a world ; they ferve only to perplex enquiry, and by no means to promote the progrefs of truth : they will be ftudioully avoided in the following lectures. - For while the myfteries of religion engroffed and perplexed the ftudies of our forefathers, the metaphyfical fpirit thence engendered infufed itfelf into philofophy; and hence the folemn definitions and unintelligible jargon refpecting extention, divifibility, impenetrability, \& c_{0} It is certainly felf-evident, that every kind of body muft have extenfion in length, breadth, and thicknefs"; that one particle cannot be thruft through another, nor one body occupy the place of another, while that other is in it. We have, indeed, many reafons to believe the original particles of all matter to be impenetrably hard; not only from experiment, but in order that nature might be immortal and incapable of wearing out. Electric matter (the fubtileft matter we know), in paffing through the human conflitution; gives a real mechanic ftroke to the ends of all the bones it meets in its way. In its explofions, it caufes a vacuum in the air, the parts of which rufhing together, after the explofion, produce the rever berated crack we call thunder. Muft not the air and electricity be, therefore, made of hard particles? We tie a foaked bladder over one end of an open cylinder, a, fig. 1, Plate VI. and dry it flowly by the fire; if then it be placed upon the plate of an air-pump, and the air under the bladder be exhaufted, the column of air b will, by its weight, burft the bladder, and, falling on the pumpplate, make a report equal to a piftol. Could this be the cafe, if the particles of air were not hard? Water alfo, like air, yields to the lighteft impreffion; its particles flide over each other with the
utmoft eafe; yet water falling through a vacuum, on metal, or any hard body, will frike it with as loud a click as if one piece of iron fell on another. The water-hammer, as it is called, proves this. The fpace a, fig. 2, Plate VI. is a vacuum, b is water. Now if the glafs be inverted, the water will fall into the bulb a; if it be then fuddenly turned into its firft pofition, it will fall on the bottom c with a loud clic. This effect does not take place when the veffel has air in it; for air divides the water that falls through it, and prevents its friking the veffel in a body, as it does in the above vacuum. Muft not the particles of water, therefore, be hard?

SECTION II.

BUT one of the moft wonderful affections of matter, is its property of attracting and being attracted. Every particle of matter has a tendency to unite with other particles, if not prevented by the repulfive power of fire (or caloric), or a ftronger affinity, as will be proved hereafter. The cavillers at the Newtonian doctrine quarrel with the word attraction; and much wafte paper has belumbered the world, in difputing whether it is a caufe or an effect. It is natural to fuppofe that one body cannot act upon another but by means of fome interpofing medium; but we have never been able to difcover what this medium is. We know that the particles of matter are held together by fome fort of influence they have upon each other ; and why not call it attraction? What is it to us, whether it is inherent in matter, or a quality imparted to it by the Author of nature? Its effects and operations, addreffed
to our common fenfes, are the objects of philofophical enquiry. Before we procced further, it will be neceffary to note a few axioms refpecting attraction and repulfion.

All bodies, whether folid or fluid, are compounded of attracting and repelling matter.

Bodies, in which the attracting and repelling matter are equal, will balance, and neither attract nor repel (but it is when they are at that critical diftance where their attractive and repellent powers balance each other), as a, \&c. fig. 23, Plate V.; where the repellent matter is reprefented by the dotted lines.

Bodies that contain more attracting than repelling matter, will attract with a force proportionate to the excefs of attracting matter.

Thofe bodies whofe repellent fire is not confined to their interior parts, but emanates round them in the form of atmofpheres*, while they are at a diftance will neither attract nor repel, as a, a, fig. ${ }_{2}$, Plate V.; yet when they are forced nearer together, fo that their atmofpheres begin to mix, unite, and coincide, they will then begin to attract. On their approach, the repellent particles that compofe their atmofpheres will be forced backwards behind the bodies, as d and g; fo that when the bodies come to a certain

* It is to be obferved, that the diftance where the attractive and repellent powers balance each other, is much regulated by the temperature of the body: if it be warm, the repellent power may ftop or balance the attractive power even without, or at a diftance from, the body; but if cold, it may be within the body, and no appearance of repulfion may be detectable. So that thefe powers fcem to have too laconic a definitions when it is faid, that "where the fphere of attraction ends, repulfion begins."
diftance from each other, there will not be fo many repillent particles between them fufficient to balance their force of attraction; on which account they will run together, and their atmofpheres will fo mix and unite, as to make up but one atmofphere to both.

Upon how noble a fcale is this exemplified in the fun ; who repels by his fire, and attracts by his body; and feems as if he gave orders to every part of his fyftem to be obedient to that law !

When bodies are preffed together, the repulfion on the furfaces reacts as a fpring. When bodies are ftretched, as a mufical ftring, if diftended as far as where the repulfion begins to take place, their force of attraction will be then overcome, and the fring breaks. So in bending fprings, one fide is compreffed, the other expanded; and therefore both effects take place. Therefore, when attraciion prevails in bodies, they become folid; when fire prevails, they become gas: hence fluidity feems a medium between the two Let us try then, in the firft place, to prove that fuch attraction exifts. Prefs two glafs plates together, whofe furfaces are even, and you will find how difficult it will be to pull them perpendicularly afunder. I fcrape the flat bottoms of two fmall leaden cones pretty even, then prefs them together with a fmall twift (to unite the particles better, not to link them), and find 100 pounds will fcarcely feparate them. In fhort, the particles that do really touch in the oppofite furfaces, adhere as ftrongly as the particles that compofe cither cone; for had every particle in one furface come in contact with the particles of the other furface, then would the two cones have become one mafs, as much as if they had been caft in that form, when in a fate of fufion. If the two flat fones with which we grind colours, be fuffered to reft for a minute, they become almoft
immoveable ; to continue their motion, requires little ftrength. This attraction therefore is gradual, when particles are deranged, or lie inconveniently by one another. Two iron planes, polifhed mathematically even, adhere fo ftrongly, that twenty-.four ftrong men have tried to pull them afunder, without effect. Two marble planes ground perfectly flat, have a little oil fpreed over them, to fill up fuch interfices as are ufual in ftones; when preffed together, a fteel-yard is applied to determine what weight will pull them afunder. The planes are then preffed together as before, and fufpended through a collar of leathers in the receiver of an air-pump, and the air exhaufted. The fteel-yard then applied to the wire which comes through the collar of leathers, feparates the planes in vacuo with the fame weights as in the open air (allowing a little for the friction of the wire and leathers). This fhews that the attraction is totally independent of the weight and preffure of the atinofphere. Why do drops of rain, on the leaves of plants, affume a globular form? or why are they globes in their defcent from the clouds? Why does water become convex, when its furface is raifed above the edge of the containing veffel; or concave, when the edge of the veffel is above the water? Or why do two globules. of quickfilver run together, and form one globe?-Balance a piece of board on the end of a fcale-beam; then let it lie flat on water, and fix times its weight will not feparate it from the water. Thefe, and ten thoufand fimilar effects, might be brought to prove that it is an attraction among the parts that produces all thefe effects. Place pieces of cork on fill water, about an inch diffant, and they will run together with an accelerated motion; or, if near enough, creep to the fide of the veffel. Nay, the largeft fhips failing near one another, in the fame direction, have been known to run foul of each other, in fpite of the rudder. The above experiment I know has been objected to; becaufe if a piece of cork be placed near the
edge of the veffel, when it is a little more than brim full, it will recede from the fide: but this, I apprehend, does not invalidate the doctrine ; for certainly the water which rifes up the fides of fivimming bodies, fpecifically affifts their union: for very light and dry bodies, which lie on the furface of water without becoming wet, have not fo powerful an attraction ; but at a proper diftance (i. e. where the attractive and repellent powers meet) will be repelled by a wet finger, or a round knob of metal, or ivory, particularly if a little warmed.-Example: If a fmall pith ball be thrown on a bowl of water, and a round knob be half immerfed near it, the fimall ball may be driven round the bowl, though the knob never touches it. The fame attraction which makes the water rife globularly above the veffel, will draw a light cork from the fide towards the centre; as the power or energy of this attraction is in proportion to the quantity of matter, the buoyancy of water, the folidity and diftance of the attracting bodies.

By the fame attractive porver are formed fones, metals, woods, falts, and every thing that may be denominated body. The effects of folders, glue, cements, \&xc. are all from the fame caufe. So jewels, hard ftones, ftalactites, petrifications, porcelain, pottery, bricks, flags, glafs, cements, artificial ftones, and plaftic earthy compofitions, which preferve their figure in drying, all are children of that great agent, Attraction.

The particles of air and water alfo mutually attract each other, as may be proved by expofing concentrated acids, or fixt regetable alkali, to the air, which will foon attract and detach a fufficient quantity of water from the air, and become fluid. It is alfo crident in the drying of wet clothes in air; in the quick diffipation of
moifture breathed on glafs, polifhed metals, \&cc.; in hygrometers ; in water depofited by cooled atmofpheric air on the outfide of decanters filled with cold water; by air cooled after paffing through red-hot tubes ; and by water precipitated from air, while rarefying on the air-pump.

As this power is much greater in fome bodies than in others, there arifes an infinite variety in the ftrength, the weight, the texture, \&c. of metals, ftones, \&c.; for we have powerful reafons to believe that the original particles of all matter are of the fame weight ; and that it is the attraction of cohefion that makes the great difference in their fpecific weight. To minds not ufed to philofophical inveftigation, it muft appear a bold affertion to fay, that the particles of gold are not one whit heavier than the particles of cork: but what fay experiment and obfervation to this? Sufpend two or three guineas, with a feather on each, on the fhelves a, fig. 3, Plate VI.; the tall glafs being then exhaufted of air, the guineas and feathers may be dropt by means of the trigger b, operating through a collar of leathers, and will ftrike the bottom at the fame inftant, if the glafs c was even five or fix feet high. Why then do not heavy and light bodies fall equally fwift through the air or water? Becaufe thefe fluids form a great refiftance to bodies that pafs fwiftly through them ; and their refiftance being in proportion to the fwiftnefs and furface of the bodies; if the feather is as large as the guinca, they will be equally refifted in their paffage through the air; but then as the guinea contains fo much matter more than the feather, there is a balance in its favour, by which it will overcome the refifting medium, and fall fafer; but where that refiftance is taken away (as in the exhaufted receiver), their particles being equally heavy, they fall exactly in the fame time, Otherwife, how fhould gold be fufpended in a
liquor, little heavier than water? for gold can be diffolved in aqua regia, like fugar in water. If the particles of gold, fo feparated, were heavier than the menftruum in which they are fufpended, they would furely fink to the bottom. Befides, every one knows that leaf gold will, for a time, float in air.

Water is, bulk for bulk, 850 times as heavy as air; yet water will rife in air, becaufe its particles, feparately confidered, are no heavier than the particles of air; the two elements mutually diffolving, and incorporating with each other. Iron becomes homogeneous with diluted fulphuric or vitriolic acid; and its oxyd, or calx, will remain incorporated with it. Copper is diffolved alfo by diluted nitric acid. So is glafs, or filicious earth, with fparry acid. Are not iron, copper, and glafs, heavier in their natural ftate, than the menftruums in which they are diffolved? Certainly. But fome will fay thefe are chemical attractions; fo they are: but let thofe who are fond of multiplying caufes, demonftrate to me, that chemical attractions are not modifications of the attraction of cohefion. Of this hereafter.

SECTION III.

On Capillary Attraction.

CAPILLARY attraction is only another mode in the action of the attraction of cohefion. It is called capillary, from the tubes,
which draw water above its level, being fmall as hairs. Thefe tubes attract in a reciprocal proportion to the bore or diameter : the fmalleft attract moft, having their oppofite fides contiguous ; they give great affiftance to each other, and draw the fluid two or three inches above its level. But wider tubes, having their oppofite fides too diftant, draw it not.above a few tenths of an inch. For the fphere of this attraction in general reaches but to a very finall diftance from the furface of the bodies.

If threc or more capillary tubes be fixed to a wire that pafies through a collar of leathers into fuch a receiver as d, fig. 17 , Plate V.; when the air is extracted by the air-pump from the receiver, and the tubes are then juft dipt in a veffel of water, the water will rife to the fame height in them as in the open air, fhewing that the preffure of the atmofphere has nothing to do with the rife of fluids in capillary tubes.

Two wet glafs planes, fig. 4. Plate VI.; feparated on one fide by a fhilling, and immerfed in water, when lifted out, will exhibit a curve, called the hyperbola ; that fhews the ratio of this attraction to be as the fquares of the increments with which the planes open, viz. as $1,2,3,4$, \&xc.; as $1,4,9,16$, \&cc. And here it may be obferved, that the laws of nature feem generally to be regulated by the fquares of numbers; as if that had been a principle in the Almighty Mind, when he created and gave laws to the univerfe.

It is inconceiveable the multitude and variety of operations in nature, that capillary attraction explains. All vegetables are but bundles of capillary tubes: and whether we confider carth, water, falt, and oil, as the food of plants-or, with Kirwan, that coal is
effential to that food-or with Ingenhouz, that it is vital air decompofed into fixt air and azote; ftill that food muft be formed by water into an emulfion, capable of being acted upon by capillary attraction: and as all roots are but affemblages of thefe tubes, there can be little doubt but their attraction fupplies the plant with its firft food ; though other caufes muft affift in carrying it to the tops of the talleft trees, fuch as dilatation and contraction, by the fucceffive heat and cold of day and night, the mufcular action of vafcular rings round the tubes irritated to contraction by the ftimulant fap, \&cc. The interior bark conducts the nourifhment fupplied by the earth. Leaves on one fide draw nutrition alfo from the air, and perfpire on the other : light probably does the reft.

This principle is not lefs active in the animal than the vegetable world. The fomach may be called the animal root; and by its action, and the gaftric folvent in it, food is alfo formed into an emulfion, and acted upon by abforbent or capillary tubes, under the names of lymphatics, lacteals, \&ic. drawing the finer part in a milky ftate to the heart, where, uniting with the venal blood, it is taken up with it to the lungs; and from the vital part of the air it meets with in them, derives its red colour. All the fecretions in the inteftines, \&x. are carried on by the fame law. Even the fkin itfelf may be faid to be little more than capillary pores, through which emulfions may be rubbed, forming the topical applications of furgery. In civilized life, thefe pores ferve, in general, to throw off redundancy, and help digeftion. In general, we eat and drink more than nature requires; the ordinary evacuations are not enough to carry all off; much perfpires through the fkin: and it is well known we in general lofe more weight by what is called infenfible perfpiration, than by any other evacuation whatfoever. Hence arifes the
neceffity of a perpetual change of our linen and clothes; for what are they but bundles of capillary tubes, abforbing this matter from the fkin? Dip you handkerchief in water, and the water creeps up it, above its ordinary level. Touch its furface with a fponge, the water rifes in it above its level. Raife a heap of fand in a flat veffel and pour water round the fand, the water will rife to the top of the fand above the water. Glue is attracted into the pores of wood, and becoming hard, forms the bond of union between two pieces of wood. All thefe inftances, and thoufands more, are the effects of capillary attraction.

Nay, a living body is capable of deriving nutrition even through the pores of the fkin. The lone favage lays him down naked on his parent earth, when fatigued with long marches and hunger, and finds that hunger abated by the contact his body has with the ground. Nor fhould we be incredulous when we hear of a late empiric, who could live for weeks together, by burying himfelf to the neck in earth: fince every failor knows, that in a fcarcity of frefh water, he dips his jacket in the fea, and, putting it to his naked fkin, finds his thirft allayed by that expedient. The refources of nature, to preferve animal life, are wonderful in the extreme!

SECTION IV.

On the Polarity of Matter.

THE diverfity occafioned by the unequal attraction in metals, ftones, \&cc. is much increafed by what may be called the polarity of matter; or that mode of arrangement which different fubftances take in paffing out of a fluid into a folid fate. For all bodies are capable of three ftates, viz. folidity, fluidity, and a gafous ftate. Water, at 3^{2} degrees of Fahrenheit's thermometer, is cold enough to become folid, in the character of ice; a little heat, and the preffure of the atmofphere, makes and keeps it fluid, and we then call it water; but if that heat be increafed to 212° of the fame thermometer, it will overcome the preflure of the atmofphere, and fly off as gas, in the character of fteam. So iron will preferve its folid form, till it be heated to 130 (Wedgewood's fcale). It will then become fluid, and the heat increafed will difperfe it as gas. Even diamonds, the hardeft fubftance we know, are capable of being difperfed by a common culinary fire; though gold, in its pure fate, bids defiance to the utmoft power of heat. It has been kept boiling in the focus of the largeft lens ever made, for eleven hours, without lofing a grain of its weight. Though when its particles are feparated by being diffolved in aqua regia, it eafily aflumes the gaffous ftate, with a fmall degree of heat. This, therefore, is not confidered as any exception to the axiom, that all bodies are capable, in certain circumftances, of the three fates of folidity, fuidity, and gas. But the polarity of bodies arifes from the manner in which the particles approach, and lay by the fide of one another, when the fire that kept them feparate, fubfides, and the
attraction of cohefion draws them together into a folid: for if fluid iron be difturbed in cooling, it will not have all the properties of iron, it will become fluid; but it will want the natural texture of iron, its colour, and fome of its firength. If water be fitred with a flick, while freezing, it will not be ice, though it will become folid; for water is a falt in a flate of fluidity, and cryftalizes in a certain degree of cold ; and its polarity, or mode of arrangement even in its folid form, may be feen on the frozen moifture upon a window. The forms affumed by different falts, arife from the fame caufe. Even metallic arrangement may be confidered as a fpecies of cryftallization. Hence metals differ from metals; fones from fones; wood from wood; \&c. and add to the immenfe variety occafioned by the different degrees and force. of cohefive attraction. Light angular bodies fwimming near one another on water, will run together, and unite their fides, in the moft convenient manner, to make one body; illuftrative of the manner in which the particles of matter arrange themfelves in the act of cryftallization, as in fig. 5, Plate VI. where the fides of falts, and other matters, accommodate themfelves to one another, and form a folid.

May not trees and all other vegetables be confidered as a kind: of terreftrial cryftallizations; where light and air are the nurfing pabula? May they not rife out of the earth, as falts fhoot? Water in a certain degree of cold, and in a very thin fheet, ramifies like a beautiful tree. Silver detached from its union with nitrous acid, by copper, fhoots into a beautiful wood, called the arbor dianæ: and all metals in cooling from a fluid into a folid flate, affume tree-like figures. Even animals are but vegetables, attached to their mother by the umbilical cord. Why do the cryftals of fhooting fal-ammoniac fop whenever they come near other
cryftals? perhaps for the fame reafon that the branches of trees ftop in their growth, or turn away, when they meet a wall, the earth, water, or a neighbouring tree. Do not all vegetables fhoot towards the light? Clofe-wooded trees have no leaves but on their outfides, and towards the light. Bloffoms are almoft without, and never within, clofe-wooded trees; fo are their fruit. Trees planted clofe, deftroy the underwood, and have no leaves or bloffoms but on their tops, being the only part that has good accefs to light: hence clofe-planted trees fhoot up towards the fun, become very tall, very fmall, and very ftraight. The fkeleton of a leaf is very fimilar to the arrangements in cryftallization.

Cover a living plant with a box that has a hole in it: the plant will lean towards the hole, and in time find its way through it. Hence vines planted witkin a houfe, and having their branches without, thrive, and produce better than when the whole tree is within or without the houfe, \&cc. The dry-rot (as it is called) in houfes, is a vegetable that preys on moift wood, both at its root, and by its fmall fibres, which in the progrefs of the plant ftrikes into the wood; fo the plant may be confidered but as one continued root, macerating the boards and beams to which it adheres, deftroying their texture and cohefion fo as to make them crumble into duft when dry. This infidious plant, though working ruin and devaltation in the dark, is fill aiming in its progrefs towards the light: its ramifications are imperfect, as well as its colour; and it is killed by letting in a current of air to dry up the moifture it loves. How like is this to the attempts which nature makes to arborize copper, tin, iron, \&ic. in the dark receffes of a mine! or to the woods of coralline matter that arborize millions of acres in the bottom of the fea! Though this laft may be fomething-like proved to
be the work of melipodes or marine infects, yet, if that be true, it aftonifhes the mind with the uniformity of nature! Are not the weeds of the fea like the arboric appearances we find in the hardeft pebbles? Do not vegetables thrive and increafe more when fupported by a wall, or efpalier, than when left to the fupport of their own ftem? and do not both minerals and falts cryftallize better when they have a finooth glafs, wood, metal, or ftone furface, to creep up, and adhere to? Many more conformities might be found out ; but thefe are enough to prove the analogy.

SECTION V.

On Magnetic Attraction.

MAGNETIC attraction is confined to iron, fteel, and the natural magnet *, which natural magnet is a ponderous iron-ftone, of a blackilh colour. This wonderful ftone is fuppofed to derive its power of attracting and repelling, from the pofition in which it laid in the earth : for, from the quantity of ferruginous, or irony matter, contained in the earth, as well as many other phænomena, there are ftrong reafons to believe the globe itfelf to be one great magnet. Steel, ftruck by lightning, or a ftrong fhock of electricity, acquires polarity or magnetifm: hence it is natural to imagine, there is a relationfhip between electricity and magnetifm.

[^3]If a bar of fteel be balanced on a point, one part of the ftone will attract it, and an oppofite part of the ftone will repel it. May we not apprehend this to be occafioned by a fubtil effluvium, inherent in the magnet? and that it may have its pofitive end and negative end, like the two rubbers on the oppofite fides of an excited electrical cylinder-one in a fate of condenfation, the other in a fate of rarefaction? For if two bodies approach each other, one poffeffed of condenfed or pofitive electricity, and the other of rarefied (or what is called negative) electricity, they fly together, and unite with avidity: but if the two bodies were poffeffed alike of either condenfed or rarefied electricity, they univerfally repel each other. This is fill but Nature ftriving for that equilibrium confpicuous in all the inequalities of her works; the pofitive ftrives to meet the negative, and the negative frives to meet the pofitive, that equality may be produced. So it is in magnetifm.
fft. If iron filings be thaken through a gauze fieve, upon a paper that covers a bar-magnet, the filings will become magnets, and be arranged by the incumbent magnet in the beautiful curves feen in fig. 6 , Plate VI. Upon the two ends of the magnet at a, the filings ftand perpendicular, and feem buttreffes of arches that would fiand over the magnet; on the fides of the magnet they flope, or incline, and feem buttreffes of inclining arches: fo that if filings could be fuftained all round the magnet, above and below, they would probably affume an egg-like figure. Is not this appearance favourable to the idea of a condenfed and rarefied magnetifm; where the abundance folicits want, and where want folicits the abundance? and where in the middle of the magnet the union is formed, and an evident endeavour made at both ends?

Eleciricity, in its efforts to produce an equilibre, by either attraction or repulfion, always acts in curves : fo does magnetifin. Place: two bar-magnets, like fig. 6, Plate VII. about two inches diftant from each other in a line, and with a condenfed to a rarefied end; place paper over them, and fift iron filings on the paper, as in the laft experiment, and the filings will be arranged in curves like $c c$. The fame arrangement may be feen at S, N, in fig. 8 , Plate VII.

2d. If two pieces of fpring-tempered fteel, formed like horfeThoes, as A and B, fig. 7, Plate VI. with the ends a, b, and c, d, be put together, and two bar-magnets (feparated as e and g, and their marked ends in contrary direction) be rubbed round the horfe-fhoe bars, with the bar e always foremoft, magnetic virtue will be excited in the two bars, and they will adhere together, as if by a hinge : if then the horfe-fhoes be laid on each other, and the four attracting ends be placed together on a piece of iron, they will not attract it, but feem as if they had loft their attractive power. Now if a fluid be the caufe of magnetifm, it is natural to fuppofe this fluid muft flow through the pores of the horfe-floe bars in the fame direction in which they received it, viz. from b to a, and from c to d; and confequently that c muft be a delivering pole, and a a receiving pole. In like manner, that e muft be a delivering pole, and d a receiving pole: and this will be found true, if the pole a be held about an inch from one end of a fufpended compafs-1needle, it will repel it; but if b be addreffed to the fame end of the needle, it will attract it. In like manner, c will repel, and d will attract. Now when one of the horfe-fhoes is laid on the other, with the poles $a b$ together, and the poles $c d$ together, it is evident an attracting and a repelling pole are put together, which mult form a counteraction,
and make them feem as if they had loft their virtue, when placed on a piece of iron ; for one may be faid to be pulling, while the other is thrufting. But if the receiving poles, a and d, be put together, and the delivering poles, b and c, be joined, when the bars are laid one on the other ; then if the four poles are placed upon a piece of iron, they will immediately take it up. It is in this manner, and on this principle, the ftrong horfe-fhoe magnets are formed, where fix or eight fuch bars are rivetted together, and will lift upwards of an hundred weight. But in order to make a regular road for this fubtil effluvium, it is neceffary a piece of iron fhould always be in contact with the attracting and repelling poles, by way of a magnetic conductor, and prevent that tendency towards condenfation and rarefaction in the two ends, which is ufually the cafe where a conductor does not unite them.

3d. Two femicircular magnets, A and B, fig. 8, Plate VII. having their poles dipt in iron filings, the filings will ftick radiantly to the poles in every direction. If the pole a be brought within half an inch of the pole b, and the pole c at the fame diftance from d, the filings will leave their radiant direction, and catch hold of the filings of the oppofite poles: for a and c being delivering poles, and b and d receiving poles, a magnetic circuit is formed, and the filings become conductors. But if the pole a be addreffed to c, and the pole b to d, the filings will not unite, but repel thofe oppofite to them, as fig. 9, Plate VII. In one cafe, the magnetic effluvium has a regular circular road; in the other, the fluid of one magnet meeting the fluid of the other, a repellency takes place. Are not thefe experiments ftrongly indicative of an electrio-magnetic iltid?

4th. The efforts which this wonderful principle will make, to accomplifs itfelf an equilibrium by means of iron or fteel conductors, are beautifully exhibited, by fufpending three or four finall iron balls by one of the poles of the magnet, fig. 10 , Plate VII. If then a piece of iron be made to touch the other pole, and fuddenly to communicate with that by which the balls hang, the balls inflantly fall from the magnet. Thefe balls may be fufpended by either of the poles, for the rarefied end will make an effort to unite with the condenfed end to form the magnetic circuit as effectually as the contrary; fo foon, therefore, as the bar q has completed the circuit, the balls are forfaken, and drop off.

5th. When three of the balls are fufpended from each pole of the above magnet (for except the magnet be very ftrong, it will not fuftain more perpendicularly), if two others are fo added that they all touch each other, they will adhere circularly to the two poles, and form the image, fig. 11, Plate VII. Can this be for any other reafon, than becaufe the balls and the magnet make one complete magnetical circuit?

6th. If feveral fteel bars be placed in a line, touching each other, and the north (or marked) end of an horfe-fhoe magnet be flid foremoft over them feveral times, in the fame direction, the bars will adhere to one another, and be all lifted by one of the bars. If then they are placed as at firft, and the unmarked end of the magnet be flid foremoft over them, as before, the attraction of the bars will be deftroyed, and they will not betray the leaft figns of magnetifm. Muft not this arife from confufing the magnetic circuit; tending to turn that into a receiving, which before was a delivering pole?

7 th. If one end of a poker (or any bar of iron that has for any length of time food in a perpendicular pofition) be held near one end of a compars-neelle, it will attrat it; but if the poker be moved flowly, in its firit pofition, till its other end comes near the needle, the needle will be repelled. is not the poker a magnet?Beyond a doubt. But how came it fo? - By fanding in the way of the earth's magnetic effluvium. For if a new forged needle be balanced on a point, and then have magnetifm given to it, by either a natural or artificial magnet, and be fufpended again on the point, it will be found to have loft its balance, and will point fo as to form an angle with the horizon of about feventy-three degrees; fee fig. 12. Plate VII. This is called the dip of the needle; and is moft rationally accounted for, by its effluvium falling into, and becoming influenced by, the ftream of the earth's magnetic effluvium. Iron railing, upright bars in windows, tongs, pokers, \&c. all become magnetic by their upright pofition ; or rather by that pofition being fo nearly parallel with the dip of the needle.

8th. If a fmall thim piece of fteel be fufpended by its centre of gravity, between two fine points, and placed on one end of a barmagnet, it will ftand perpendicular to the bar: if it be then flid towards the other end of the bar, it will begin to incline towards a level: at the middle of the bar it will hang horizontally, and then incline and ftand with its other end perpendicular to the bar.

Is not this a proof, that the globe of the earth is one great magnet? and that a fimilar effluvium flows through it, as through thofe magnets thus defcribed, and thus detached from it?

9th. Take the poker a, fig. 13, Plate VII. hold its knob near one end of the compafs-ncedle, and it will attract it: keep the knob in the fame fituation, but turn the poker upon it (as on a centre) into a contrary pofition, as b, and inftantly the knob will repel that end of the needle it attracted before, and attract the other end of the needle; flewing, that the poles of the poker were changed by the change of its pofition. This experiment fucceeds beft, when the poker points towards the earth's magnetic pole, at an angle of 73° with the horizon; for then it is parallel -with the earth's effluvium, and partakes, as it were, of it ; fo that, when the point of the poker is upwards, it receives the effluvium, and becomes what is called a fouth pole; and its other end is a north pole, and attracts the fouth pole of the needle. But when it is inverted, and the knob points upwards, that end of the poker becomes the receiving, or fouth pole, and confequently repels the fouth pole of the needle; conformably to the idea, that a fubtil Jometbing flows through the earth, the fea, and the air, that has a peculiar affinity to iron, fteel, and the natural magnet; making thefe fubfances into magnets, by only being in its way.

As iron, or ferruginous matter, is more particularly diffufed through the body of the earth than any other metal, and that in a regular form (for iron-ore is not attracted by the magnet), this effluvium can never be in want of its condlucting matter: but why that power fhould affume thofe ferpentine and other forms we fee in the lines reprefenting the needle's variation, is yet unknown. Some fuppole that the diurnal rotation of the globe, or fubterranean fires, may caufe this fingular arrangement in heavy materials, and :alfo occafion their removal weftward. But this is merely conjecture; no obfervations yet made, give it the leaft countenance.

2EC. 11.]
10th. That this virtue has a progreffive tendency, is evident; for if a_{8} fteel wire (rendered magnetic) be twifted into a fpiral fpring, the virtue is ftrangely confufed. It will attract in fome places, in others repel. Nay, in fome places, one fide of the wire will attract, and the other fide repel ; fhewing the difpofition of the fluid to= flow forward, and form a circuit.

11th. A bar of iron made red-hot, and quenched in water; or cooled in air, ftanding in the pofition of the dipping-needle, will acquire magnetifm. Does not the earth's magnetic fluid, flowing through the ductile metal, adapt or arrange its pores, both for the reception and retention of magnetifm ?

12th. For the fame reafon, if a bar of iron be fixed in the direction of the dipping-needle, and rubbed all one way, with the end of a fteel bar, or even a pair of tongs, the iron will become a magnet.

19th. A fmart ftroke of a hammer on the end of a bar, ftanding in the direction of the dipping-needle, will give it magnetifm; and the poles may be changed by friking the other end.
14. If a bar, in the above pofition, receive a finart electrical fhock, it becomes inftantly a magnet; the end towards the earth (or rather towards the north magnetic pole) becoming a north, or delivering pole, and the other a fouth, or receiving pole; and it is well known, that a ftroke of lightring has often changed the poles of a mariner's compafs-needle.
15. That iron receives a magnetic virtue by fanding in the di-
rection of the earth's magnetic effluvium, is not more remarkable than its acquifition of magnetifm by being held lengthwife near the poles of an horfe-fhoe magnet; when, by trying it with iron filings, it will be found to hold them at each end, as if it had been regularly impregnated. Nay, if fo heavy a piece of iron be held to the poles of a magnet that it cannot fuftain it, if another piece be held a little below it, the magnet will fuftain it. What wonderful efforts will not this power make to acquire a circuit and regain an equilibrium!

16 th. Thefe arrangements and polarities are beautifully exemplified, by filling a glafs tube with iron filings; if the tube be touched by a magnet (as if it were an iron bar), the glafs will appear to have acquired magnetifm, and will attract filings. But flake or difturb the filings within the tube, and all magnetifm difappears.

How far thefe obfervations and experiments go, to eftablifh the doctrine of a magnetic effluvium flowing through the earth, or from one end of a magnet to the other, muft be left to the reader's judgment and opinion. We are apt to laugh at the fubtil matter of Des Cartes, and the rether of Euler, as occult qualities, which modern philofophy will not admit into its creed. But this effluvium is a fubtil matter, an æther, equally as inexplicable, and as equally out of the reach of our five fenfes to fcrutinife; but if we may venture to guefs at caufes by effects, and to compare analogies witin what we can fee, feel, \&c. I think we have infinite data in favour of an electro-magnetic fluid, fuperior to any proof that can be brought of rether being the caufe of gravity, light, vifion, \&c.

SECTION VI.

Mijcellaneous Objervalions.

SMALL magnets have a ftronger attractive power, in proportion to their fize, than large ones; and fometimes a piece broken off a ftone magnet will be ftronger than the fone itfelf: fhewing the ftone not to be homogeneous, but that fome parts of it are more fufceptible of magnetifm than others.

Magnetic power may almoft be faid to be created by friction, rather than communicated by it; for a magnet acquires ftrength by giving magnetifm to iron; fo that if all the magnets in the world were loft, magnetifm might be revived, by rubbing the end of one fteel bar againft the fide of another.

It is highly probable, that the near approximation of fteel, or iron, to the texture of the ftone magnet, is the reafon why fome iron is more fufceptible of receiving and retaining this virtue than others.

Unimpregnated iron attracts the magnet as forcibly as the magnet attracts it; (for iron feems to folicit the union by as forcible efforts as the magnet itfelf). Hence, if a magnet be made to fwim in a little boat, and a piece of iron be held ftationary, at a little diftance from it, the boat will move to the iron.

One magnet attracts another, with lefs force than either attracts
iron: but the two magnets will influence each other at a much greater diffance.

The north pole of a magnet, properly fufpended, always points towards the north magnetic pole of the earth; and vice verfa; and in the time of the aurora borealis, in the direction of its rays: and an heavy fteel bar lofes of its weight; when magnetized.

Files, and other hard feel tools, acquire temporary magnetifm by their friction or collifion with iron.

Magnets lofe their power by length of time, if left without thofe conductors, or pieces of iron, which form the magnetic circuit. For horfe-fhoe magnets require but one, as q, fig. 10, Plate VII.; but bars require two, as fig. 8, Plate VI. the bar a lying. with its marked, or north, end e, in a contrary direction to the bar b, whofe north end is at f. The conductors are c and d; fo the bar a delivers its effluvium at e, to the conductor c; and the bar b delivers. it at f to d; forming the magnetic circuit. In thefe pofitions, and in this ftate of equilibre, magnets retain their virtue for ages; and if, by accident, their virtue becomes impaired, it may be eafily regained, by hanging a bag to its conductor, and increafing its weight with Shot or fand.

Artificial magnets, made of hard tempered fteel, are much ftronger than natural magnets, and communicate the magnetic virtue more powerfully.

Flat bars, about one eighth of an inch thick, receive and retain. magnetifm better than when thicker; becaufe, in hammering thick
pieces, the interior parts cannot be arranged in the fame manner as the outfide, but muft form a refiftance to the paffing fluid.

Fire and ruft injure the virtue, by confufing the direction, of the magnetic ftream.

If a natural magnet be broken into any number of pieces, each piece will have an attracting and a repelling pole; and the middle part, between the poles, will neither attract nor repel.

If a fteel fewing-needle be rubbed, from its eye to its point, a few times over the north (or marked) pole of a magnet, and then fluck in a fmall cork, to fwim in water; the eye will point to the north, and the point to the fouth. This forms the Chinefe compafs.

Magnets exert their greatef power at their ends; for the wife purpofe of catching conductors, to form the magnetic circuit.

If a piece of common iron be held to one end of a magnet (fo that the grain of the iron and the magnet be in the fame direction), the other end will lift more than it would otherwife.

The attraction and repulfion of magnets is not diminifled by the interpofition of any other body. Small fewing-needies may be made to dance on a table, by moving a magnet under it. Many magic pictures are made, and curious queftions anfwered, by devices formed on this principle.

Whatever deranges or difturbs the pores of a magnet, injures its
magnetic force; fuch as ftrokes from a hammer, or other violent percuffion, \&c.

When fimall bars of foft iron are applied to the two poles of a natural magnet, and fixed there by thin plates of brafs (called armour), as fig. 9, Plate VI. where a is the natural magnet; b and c the bars, the effluvium flowing all round the magnet, from one end to the other, is diverted through the conductor e, which will fupport a much greater weight than the natural magnet unarmed.

Many fubftances feem flightly attracted by the magnet, befides iron; but it is known that almoft every animal, vegetable, and mineral fubftance, contains iron ; and hence they appear to be affected by the magnet.

A piece of iron held near a magnet, becomes a magnet itfelf for the time; and that end neareft the magnet acquires a contrary polarity ; that is, one delivers, and the other receives, the effluvium, for iron muft receive magnetic virtue before it will be attracted.

If two magnets approach each other, with poles of the fame name, they are mutually repelled at a fmall diftance ; but if brought into contact, they attract and ftick together: for a ftronger magnet will change the poles of a weaker, the inftant they touch each other ; like ftronger light abforbing, or turning back, weaker.

SECTION VII.

On the Variation of the Magnetic Needle.

TO enumerate all the theories that, at different periods, have taken place about this myfterious phænomenon, would fill a volume. I reject the internal loadfone of Halley, becaufe neither experimental nor analogical proof can be had of its exiftence ; and its four poles account no better for the variation, than the two poles of Euler. Simplicity is dictated by nature, and I adopt its fuggeftiont. Qbfervation muft be our guide.

Before any rational theory can be formed, we muft premife a few poftulata, that feem to lead to it. Firft, heat weakens the attractive power of all magnets. A compafs-needle has a periodical revolution by the heat of the day, and cold of the night; it will increafe in variation from eight in the morning, till about one, then become fationary for fome time, and before morning return to its firft pofition. In the winter, this variation is about 6 or 7 minutes of a degree; in the fummer, about 13 or $\mathbf{1 4}^{\prime}$. This proves that heat is concerned in the general variation of the compafs. 2d. The whole fpace included in the arctic and antarctic circles, may be faid to be nearly round planes, with their edges prefented to the fun ; his rays falling, therefore, fo oblique, and in fo fmall a quantity, on thele frigid zones, muft occafion their excefs of cold: but cold affifts magnetic attraction ; and as the bafer metals are found more towards the polar than the torrid regions, iron is probably in greater abundance there, and may determine the place of cntrance, or exit, of the earth's magnetic fiream, and of courfe determine the place
of its poles. For iron (even in a metallic fate) is found, in moft parts of the globe, in greater abundance than all other metals: and bar-iron acquires magnetifin by ftanding parallel with the dippingneedle in all parts of the globe, as iron filings do by lying in the effluvium of a common magnet. This proves the earth itfelf to be a magnet. A ftrong fhock of electricity paffing through a piece of iron, will give it temporary polarity; but paffing through hardened fteel, the fteel will acquire fixed polarity and magnetifm. A ftroke of lightning has, in like manner, given polarity to iron and fteel; has made many fewing-needles to ftick together ; and has changed the poles of the compafs-needle. The aurora borealis alfo affects the needle with tremor and vibration, making it point towards the centre of the aurora : reinforced by many other reafons, thefe prove lightning, electricity, and the aurora, to be all of the fame nature, or electricity. If electricity, light, and fire, be but modifications of one and the fame principle (as I hope will be proved hereafter), and they have their origin, or fountain, in the fun, it is natural to fuppofe, in iffuing from that luminary, they proceed from him firft in their pureft flate, or in the character of electricity ; that joining the particles of our atmofiphere, electricity becomes light, and uniting with the grofler earth, fire. The lower region of the atmofphere is an electric, or non-conductor, when very free from moifture ; but the air, rarefied on an air-pump, till it becomes of the lame rarity, or thinnefs, as the upper region of the atmofphere, is a conductor of electricity. Hence the difficulty electricity has in making its way through the lower air (after that air has been fome time dried by hot weather), exhibiting thunder and lightning; and hence the eafe with which electricity glides through the upper air towards the poles, in the character of an aurora. This idea may be better underftood by fig. 16, Plate VIII. where A reprefents
the fun's rays falling on the upper air at $c c c$, and penetrating it as a conductor. At $d d$ they penetrate directly, and forcing their way into the lower air, occafion thunder and lightning by it refiftance, when that air is not moift enough to conduct the lightning to the earth. Hence the fuper-quantity of thunder and lightning in the torrid zone, than in the other parts of the earth. Motion being rectilineal, all matter in motion ffrives to go forward in ftraight lines, and the eafieft way: the conducting part of the polar atmofphere is in a line with the fun's rays, as $c m$, and $c g$; and the parts i i approach fo near to the fame direction, that it will be eafier for thefe rays to flide down the conducting parts $c i$, towards the poles, than pufh into the non-conducting parts $a a$. Hence a condenfation of electricity muft take place near or about the poles, and occafion the aurora borealis, and aurora auftralis, as at r and s; for when electricity is condenfed to a certain degree, it always becomes vifible. In this figure, the northern hemifphere of our globe is prefented to the fun, as it is at our midfummer ; and muft, from its pofition, receive, within the arctic circle, more electricity from the fun, than can be received within the antarctic circle. May not the ferruginous matter of the earth conduct this fuperabundant pofitive quantity to the other pole, now in a negative ftate, and produce the horizontal aurora, feen ftreaming upwards towards a point, and generally in the north-weft?-And is not this the reafon why the ftreamers are feen only in the winter, or about the equinoxes? Electricity excites to more vigorous exertion the living principle of both plants and animals ; excites quicker motion in fluids; excites the heart to a fwifter pulfation: and may it not exicite the latent, though inherent, principle of magnetifm in iron?-(for friction calls forth magnetifin, as well as electricity). The act of making a bar-magnet by rubbing, gives it electricity enough to affect a fenfible
slectrometer. Electricity may be drawn from every kind of fubftance on the earth's furface; and the earth has, therefore, been called the grand refervoir of it: no doubt but it is diffufed through the general body of the earth, and poffeffes thofe bodies moft, to which it has the moft affinity. Now iron being more abundant in the earth than all other metals, and proved to have affinity with, and to be a conductor of, electricity ; and electricity having the property always to endeavour at an equilibrium, whereever it is in a condenfed or rarefied ftate; if the north polar regions be in a condenfed ftate in fummer, and the fouth in a negative or rarefied ftate, and vice ver $\int a \hat{a}$, then will there be a circulation through the globe between thefe polar regions, that may arrange the ferruginous parts of it into a magnetic axis, like the lines of variation, ferpentine as $x x$, fig. 16, Plate VIII. or, perhaps, in the order they are really found to be, as in fig. 17, Plate V.III. As the northern hemifphere is expofed to the fun eight days longer every year than the fouthern, and as the extremes of heat and cold are much greater in the latter (fee Aftronomy), may not this be the reafon why the fouth magnetic pole is farther from the fouth pole of the equator, than the north magnatic pole is from the north pole? For it is conceived that the north magnetic pole is fomewhere near the arctic circle, and fuppofed by fome to have a regular rotation round it, in a certain period of years; fome think fron eaft to weft, and fome from weft to eaft : fome affirm it regular, and calculate on that regularity; but more are convinced it is not regular: fome argue that capes and iflands retard its motion, and, therefore, that the north and fouth magnetic poles are not antipodes to one another ; for the fouth magnetic pole feems, by the effect it had upon the needle of Captain Cook's compafs (which turned feveral degrees in one day's failing), to be about $144^{\frac{1}{2}}{ }^{\circ}$ caft long. and 59° fouth
lat. By other accounts, it feems to be in 130° eaft long. and 66° fouth lat.; and others place it 165° eaft long. and 60° fouth lat.; fo that it feems to fhift backwards and forwards with too much irregularity, to form any theory of its caufe, fituation, or motion.

That a line, on cvery part of which the needle points due north and fouth, does run ferpentine between thofe two magnetic points, is more than probable; for fuch a line is found near Cape Florida, rumning through the Bahama and Leeward Illands, paffing over part of Guiana and Brazil, where it again enters the Atlantic Ocean, and is believed to pafs over the real fouth pole to the fouth magnetic pole c, as denoted by the fpotted line a a, fig. 17, Plate VIII. On the eaft fide of this line, the variation is rueft; on the weft fide, the variation is eaft. Another line of no variation is alfo fuppofed to originate at the north magnetic pole d, and to pafs over the real north pole; after which it is really found to run through Siberia, Tartary, China, and the Eaft-India Ifles, along b; and from thence fuppofed to the fouth magnetic pole c. On the caft fide of this line the variation is eaft; and on the weft fide, weft; agreeably to the figures, fhape, and difpofition, of the ferpentine: lines on the hemifpheres, fig. 17, Plate VIII.

Notwithfanding the irregular motions of thefe poles, and the: lines of variation iffuing from them, there are conformities thatwould feem to lead to a rule or theory: The line of no variation in 1700 , paffed from about Charleftown, South Carolina, north of the Bahama and Leeward Iflands, ferpentine towards the coaft of Africa; by which it paffed about one third of the diftance between. that coaft and that of South. America, towards the fouth pole. Since that time, it has moved irregularly towards the weft. 30°,
but fo as to kcep nearly parallel to itfelf; carrying the eaft and weft lines of variation along with it. This feems as if the magnetic poles had a motion from eaft to weft; though fome affirm their motion to be from weft to eaft: an hypothefis which has but one obfervation, to fupport it, that can be much depended upon, viz. that the line of no variation paffed over London in 1657, and not over Paris till 1666. But the imperfection of needles, and of obfervation, at that time, might occafion this opinion; for as the lines of variation do certainly move weftward, there can be little doubt but the magnetic poles move the fame way.

It has been fuppofed, that the aurora, or northern lights, have the centre to which they generally tend, over, or in the zenith of, the north magnetic pole ; and, therefore, when that is beneath our horizon (in its rotation round the real pole), thofe lights muft difappear to us; and from thence may be inferred a reafon for the vulgar opinion, that the ftreamers were never feen till the year 1714. In the writers of the dark ages we frequently read of armies feen fighting in the air, as portents of fome impending wars, or other calamities: there can be little doubt but thefe were northern lights. However, there feem intervals in the appearance and nonappearance of this ftriking phænomenon ; it has not been feen remarkably in England for feveral years ; and if it could be proved that it followed the north magnetic pole, or was influenced by it, this would be a grand ftep towards afcertaining its period.

That thefe lights are electricity, many other proois might be adduced. Light from fixed ftars is not refracted, or bent, in its paffage through the aurora; neither is the light from a candle, or any other luminous body, refracted or bent in paffing through the
flames of electricity. Both the aurora and electrical light, viewed through the prifm, exhibit the fame colours as a ray from the fun, \&c.

SECTION VIII.

On the Dipping-Needle.

LET a bar of hard fteel, fig. 12, Plate VII. (unimpregnated with magnetifm), be fufpended horizontally between two nice points, fo as to hang in equilibrio: if then it be touched, as before directed, and again fufpended, it will be found to have loft its horizontal balance: in this part of the world it will incline, fo as to form an angle with the horizon, of near 73 degrees; further north, it would incline more; and probably over the north magnetic pole it would ftand perpendicularly. Such needles, taken into various parts of the world, dip as in fig. 14, Plate VII. On the magnetic equator $a b$, the bar would hang horizontally; at c, it would dip as fig. 12, Plate VII. ; at the north magnetic pole d, it would ftand like the lines, perpendicularly: i. e. at a or b it would be fo equally acted upon by both the north and fouth pole, as to obey neither; but as it approached c, its fouth pole would point through the earth towards the north magnetic pole, and incline in an angle equal to the complement of the angle 73°, mentioned above ; and if perfectly at liberty, fo as to turn in any direction, it would form itfelf parallel to the luminous beams of the aurora borealis; for that point in the Heavens to which the beams of the aurora appear to converge at any place, is the fame as that to which the fouth
pole of the dipping-needle points at that place, when the aurora is ftrong, and points to a centre.

If a loadftone be ground into a globe, the fame dip and inclinations will take place upon it as upon the real earth: fee fig. 15, Plate VII.; where a is the terella or globular magnet, and b a fmall glafs globe, blown at the end of a capillary tube c. If a quarter of an inch, broken off the fmall end of a fmall fewingneedle, be put into the bulb b, and the bulb be flid over various parts of the terella; in two places, the bit of needle will be found to fand perpendicularly on its ends: thefe places on the terella are its poles. The needle moved flowly from one pole to the other, will firft incline a little, then more, till it is half way between them, or at the magnetic equator; there it will lie horizontally on the globe: on being moved forward, its lower end will begin to be elevated, and will become more and more fo, till it arrives at the other pole, when it will ftand perpendicularly on the contrary end. This is precifely fimilar to what happens to the dipping-needle, when carried to various parts of the earth; and, therefore, the globular magnet is properly called a terella, or little earth. Filings ftrewed on the terella, will exhibit the fame appearance; and if its magnetifm has not been difturbed or deranged, by lying with, or near, other magnets, the filings will appear on it like fig. 14, Plate VII. Otherwife, the filings often appear in little tufts, indicative of a difturbed magnetifin ; a circumftance, no doubt, to which the earth itfelf is liable, from the magnetifm of it being found different at the fame place, after a fhort fpace of time. This, I think, indirputably proves the earth to be magnetical.

SECTION IX.

Magnetic Amufements.

1. HOLD the north pole of a magnet near the fouth end of a fufpended needle, and the needle will become agitated; and, with a vibratory motion, feem wifhful to approach the magnet, for about half a minute, when the magnetic ftream will become alike in both, and then the needle will be at reft.
2. A tee-totum in motion, will be taken up by a magnet, as if at reft ; and one or two more will hang to the firft, though they turn in contrary directions. Young people are much entertained, by feeing a tee-totum fpin on its head, as well as on its foot.
3. The figure of a fmall fwan, with an iron bill, may be made to fhew its fondnefs for bread, and averfion to cheefe, by fticking a piece of bread (with a wafer) on the north pole of a magnet, and a piece of cheefe on the fouth pole; the fwimming fwan will follow the bread round a bafin; but, on turning the cheefe, he fwims from it.
4. The figure of a fmall fifl, having a piece of iron in its mouth, will follow a hook of fteel magnetized, round a bafin of water; and may be lifted out of the water by it.
5. The iron coffin of Mahomet is faid to be fufpended in the air, by a powerful magnet. A finall coffin, made of very thin fheet iron, and faftened to a table by a black horfe-hair, will feem
to hang under a magnet, as if without fupport; fo that a quill, or ivory knife, may pafs between the coffin and the magnet.
6. If in a pond of water, of about an inch in depth, and eight inches diameter, the above fiwan be placed, and on the edge twelve hours be marked, as on a clock face; and then a watch, having on its hour centre a light magnet fixed, be placed clofe under the thin brafs bottom of the pond; when the fivan is put in the water, it will fwim to the hour and minute of the day, and tell the company what o'clock it is.
7. The divining circles are drawn on paper, pafted on the top of a thin box, $A B$, fig. 18, Plate VIII. The index a is fixed on the axle of the tootlied wheel c, which works into the pinion d. On the axle of d is another pinion of the fame number of teeth, that puts in motion the wheel g, of the fame fize and number of teeth as the wheel c. On the axle of g is fixed the bar-magnet $q q$, and they turn together. Over this axle (but independent of it) is fixed a point for the loofe needle $x x$ to turn upon, and which is the centre of the pafted circle F. In the compartments of this circle are written anfwers to the queftions afked in the compartments of the circle G. A carton of ftrong paper, of the fize of F, fhould cover the pafted circle, and turn eafily on the centre \approx : it fhould have one of the triangular pieces, as F, cut out, in order to fee the anfwers. If then the needle be taken off its point, and a perfon wifhes to afk fome of the queftions on the carton G, the perfon muft turn the index to the queftion, and then place the needle on its point, giving it a whirl round, when it will ftop over the anfwer. The open part of the loofe carton being turned to that place, will exhibit the anfwer.

LECTURE III.

MECHANICS.

SECTION I.

On Grarity.

IN the laft lecture we endeavoured to give a general idea of the leading laws of nature ; in this, its mechanic laws fhall be more particularly confidered. The attraction of cohefion, that wonderful power, by which the atoms of matter draw together, cohere, and maintain diftinct forms, we hope was fully explained. But this principle is of much more extent and influence than appeared in that lecture; for we have many proofs to offer, that gravitation itfelf is but the attraction of cohefion upon a larger fcale. By gravity, we mean that tendency all matter has towards the earth's centre : it is weight; and has been fuppofed to arife from an attracting fomething placed at the contre. But the following experiments tend to prove, that the whole globe itfelf is the attracting body, and not any thing placed at its centre. A pound of lead, and 200 yards of packthread, were put in one fcale of a balance, and the fame weight of lead and length of packthread were put in the other fcale-they balanced eachi other. But when one of the plummets, fufpended by its 200 yards of packtiread.
was hung in the fhaft of a coal-pit, of that depth from its fcale, they did not balance each other; that in the coal-pit was lighter. Now, as the air is more denfe at the bottom of fuch a pit, than at the top, it is natural to fuppofe its greater buoyancy might occafion the difference; but when allowance was made for that, ftill there was found a want of weight in the fufpended plummet, that could not be accounted for, but from the attraction of the 200 yards mafs of earth above it. This mafs certainly bears but a trifling proportion to the mafs below it; but its attraction (on account of its vicinity to the plummet) will be feen hereafter to be a fufficient caufe for the lofs of weight in the plummet.

2d. A mountain was felected in this illand, for the purpofe of fufpending the plumb-line of a zenith-fector, from the top of an high precipice. The plummet evidently inclined towards the mountain, out of a perpendicular. The fame experiment was made over a fimilar precipice, on the other fide of the mountain; and fill the plummet was found to be attracted towards the mountain. A ball, nicely fufpended, was hung near a huge body of lead, and fo inclofed that heat, cold, or motion, in the air could not affect them ; and the fmaller body was attracted to the larger. Do not thefe experiments fhew the whole body of the earth to be the attracting body, and the caufe of weight? This mighty principle forms the earth into a round and denfe ball, holds every thing animate and inanimate to its furface, and makes its whole furface its general top! By this do we ftand faft on all fides of the globe ; for the thickeft mafs of earth is directly under our feet, wherever we ftand; and the thickeft mafs has the moft powerful attraction, acting upon all bodies according to this law. If I let a ftone drop from my hand, I fay it is the attraction of the earth,
that draws the ftone to the earth. But if I let a ftone drop from the top of St. Paul's cupola, I find it is accelerated in its defcent, going fafter and fafter: i. e. it will fall about $16 \frac{1}{\frac{1}{2}}$ feet, or a rood, in the 1 ft fecond of time; it will fall three roods in the 2 d fecond; five roods in the 3 decond; feven, in the 4 th fecond, \&c. agreeable to the odd numbers $1,3,5,7,9,11,13,15$, \&c. Why fhould the body be accelerated ?-The power of gravity is as great on the top as on the bottom of St. Paul's ; nay, we find little difference in this power, between the tops of the highteft mountains, and the deepeft pits. There is a principle, Newton calls vis inertia, which, I think, clearly explains this; but let us firf enquire what it is. Every one muft obferve a fluggifhnefs in all kinds of matter ; that when it is at ref, it endeavours to continue at reft; and when in motion, it inclines to continue in motion. No doubt, if I lay a ball on the ground, it would lie there for ever, if fomething did not put it in motion : and if I kick it with my foot, it would run or fly for ever, if there was no impediment to ftop it. If I puif a bowl of water with my hand, the water flies over the edge of the bowl upon my hand; for it endeavours to continue in the ftate of reft it was in. But if I take up the bowl, and running away with it, ftop of a fudden, the water flies forward the way I was running; from its vis inertia, or tendency to coutinue in the ftate of motion it was in. Lay a guinea on a finall card, and both on your finger ; the fmart fpring of your fore-finger againft the edge of the card, will drive away the card, and leave the guinea on your finger: the inertia of the gold is the caufe. Hence the difficulty of putting heavy bodies into motion, and of ftopping them when in motion. Why do I run my head through the fore-glafs of my carriage, when it accidentally runs againft a poft? My body is fubject to the fame law as the moft inanimate
matter; and endeavours to continue in the fate of motion I was in, before the carriage firuck the fpot. The word endeavour applied to inanimate matter, calls forth the feeble criticifms of minor philofophers ; but certainly all that was meant by it by the great Newton, was what we may fee every moment, viz. the tendency that all matter bas to continue in the fate it is in, webether of reft or of motion. But how is this vis inertice, you will fay, to account for the accelerated defcent of falling bodies? If it is the power of gravity that pulls the ball from the top to the floor of St. Paul's, let us fuppofe that gravity to ceafe, juit when the ball had fallen half way: now the quantity of motion it had acquired in that defcent, would carry it forward, though gravity had ceafed there, and that by its vis inertia, or endeavour to continue in that ftate of motion it was in. As this law, like gravity, never fleeps, this power muft operate upon the falling body every inch of its defcent, and of courfe increafe its motion. The air forms a refiftance to falling bodies; and, therefore, under any other retardation, no doubt the fame rule will hold good: an iron ball will fall about a rood or 16 feet in the firft fecond of time ; it will fall three roods in the 2d fecond, \&c. and if, by a counterbalance, it falls but a foot in the firft fecond, it will fall three feet in the $2 d$ fecond, five in the next, feven in the next, \&c. as may be proved by hanging two balls, of unequal weights, by a long thread over a pulley; for by the flownefs of the ball's defcent the refiftance of the air may be confidered as nothing. The pulley fhould reft on friction wheels, as fig. 1 , Plate V. Mecbanics, to render the friction as little as poffible. If now the heavier ball a have its centre brought even with the top of the fale, and the pendulum c be drawn on one fide, till the loofe hammer d frikes the bell o, and bot'l the ball and pendulum be let go at that inftant, then will the ball a frike the ffage marked 1 , at the fame inftant the hammer
ftrikes the bell wo fhewing that it falls one in the firn fecond of time. If now the ftage 1 be taken away, and the ball and pendulum be put in the fame polition as before, and let go at the fame inftant, there will be a fecond ftroke on the bells, the inftant the ball a ftrikes the ftage 3 ; or, in other words, there will be two vibrations of the pendulum while the ball has fallen four, the fquare of that time. If now the fage 3 be taken away, and the pendulum and ball be put in the fame pofition as at firft, the belis will frike three the inftant the ball firikes the ftage 5, \&c. fhewing the ball to have fallen through nine faces in three feconds, and that the fall of bodies is as the fquares of the times: and which may be well reprefented by the endlefs triangle, fig. 2, Plate V. $a_{5} b$, where ${ }_{1}$, $2,3,4,5$, \&cc. reprefent the times, or returns, of the pendulum $d c$. Fig. 1, Plate V. Mechanics, a is a plummet a little heavier than b, fo as to fall from a to the firft figure of the fcale, marked with the large figure 1 ; this it performs in one fecond of time, or while the pendulum $d c$ makes one vibration. In the next fecond, it will fall from 1 to 3 of the large figures, or from 1 to 4 of the fmaller ; i. e. it will fall the height of three of the divifions in the $2 d$ fecond of time. In the next fecond it will fall 5 of the divifions; in the next, $7, \& \circ$ agreeable to the odd numbers, $1,3,5,7,9,11,13$, \&cc. So that we find another corroboration of the idea, that the fquares of numbers was in the Almighty Mind at the creation of all things. Here we find at the end of the gd fecond of time the ball has fallen nine; at the end of the fifth fecond, it has fallen twenty-five ; at the end of the ninth fecond, it has falled eighty-one, \&ic. the fquares of the times.

This law equally holds in the fall of projected bodies. If I throw a fone horizontally, it falls to the ground in a curve of the parabola,
and as fatit as if I let it drop from my hand; and by the fame rule as the foregoing. It feems a bold affertion to fay, that a camon, difcharged horizontally on the top of a tall tower, fhall throw a ball two miles diffant ; and that it fhall ftrike a level plain, or the ground, at the fame inftant that another ball, let fall from the muzzle of the gun (the moment of its difcharge), fhall frike it ! But there is no doubt of the fact ; for though the projected ball may feem to move point blank (and bid defiance to the power of gravity half its way), it will perform that balf in fo fhort a fpace of time, that it will fall a rood in the 1 ft fecond, as from a to c, fig. 3, Plate V. Mechanics; three roods in the ed fecond, like other falling bodies : for an horizontal impulfe retards not the power of gravity, in refecet to time. I have a groove in the board a, fig. 2, Plate IX. from b to c; it is made cycloidal, as being the line of fiwiftef defcent; down this groove, I let fall a child's marble, and it flies through the rings d, f, g, defcribing the femi-parabola $c r$. But at c, the ball ftrikes a feather which lets fall the ball q; the balls r and q frike the horizontal level $s r$ at the fame inftant.

This may be fill more mechanically reprefented by fig. 3, Plate V. Mechanics: for as bodies that are acted upon by two contrary or oblique forces, obey neither; $\lceil 0$, as above, we fee the power of gravity endeavouring to pull the ball down to the ground, while the gunpowder impels it horizontally ; it obeys neither, but a medium, or diagonal of the two. Let a reprefent the gun, $c d$ the horizontay difiance, or the power of the gunpowder in the firft fecond of time; ce the power of gravity: the ball obeys neither, but defcribes the diagonal, or medium, $c \mathrm{~g}$. When at g, the impulfe of the powder would force it along the line $g h$, but, counteracted by the power of gravity, it falls down to n, \&c. thus falling in the above ratio,
$1,3,5,7,9,8 \times c$. while the retardation of the ball by gravity, and the refiftance of the air, is reprefented by the numbers $10,9,8,7$, 6 , \&cc. * This propofition, though the foundation of the art of gunnery, is not ftrictly true. Robins has found the ftates of the air, the different ftrengths of gunpowder, and other circumftances, take off a little from its correctnefs, though the theory is ftrictly juft ; as will be feen, when we apply this fublime law to the explanation of planetary motion. Bodies thrown upward, are retarded in the fame ratio as they are accelerated in their defcent: and it is a pleafing circumftance, to fee how the greateft and the leaft things in nature are regulated by the fame fimple laws! Is it not wonderful, that the fame law which brings the ftone to the ground, which I throw from my hand, fhould be that by which the mof magnificent of all machines is regulated, viz. the folar fyftem? If A reprefent the earth, and B the moon, fig. 1, Plate IX. and we find that her orbit N is an oval, or which may be faid to be nearly made up of the curves of the parabola, and that fhe falls from a tangent, $B r$, to her orbit, agreeable to the odd numbers $1,3,5,8 c$. we cannot doubt but fhe obeys the fame law as the common projectiles on the furface of the earth.

1 ft . That bodies which are acted upon by two or more forces, obey none of them fingly, but a medium of all the forces, is proveable in many familiar inftances. Let a be a billiard ball, fig. 10, Plate IX. and fruck by two cues, b and c, at the fame inftant; b would impel it in the line c, and c in the line d; but both will impel it along the line f, the diagonal or medium between d and e.

2d. If a leaden ball be dropt from the maft-head of a fhip, under

[^4]fwift fail, one would think, before the ball would reach the deck, the flip would be flid from under it, and that it would fall behind the fhip into the fea. This is not the fact ; for the ball falls down by the fide of the maft, as if the fhip were at anchor. Why? Becaufe the ball is under the influence of two forces; one horizontal, by the motion of the fhip; the other perpendicular, by the power of gravity: fo that though it appears to fall perpendicularly, it does not, but defcribes, in fpace, the fame kind of femi-parabola as the aforefaid ball fhot from a gun.

3d. If I throw a \log of wood into the Thames, when the wind is acrofs the river; the log will not obey the current, by going down the river, nor the wind, by going acrofs the river, but a floping direction made up of the two. The motion of a cannon ball, difcharged with $1-3 \mathrm{~d}$ its weight of powder, is nearly equal to the motion of any point in the earth's equator. When therefore the ball is difcharged caftward, its motion is doubled, by the motion of the earth; when to the weftward its motion (in regard to fpace) is notbing.

Peidulums obey the power of gravity reciprocally, as the fquare roots of their lengths ; i. e. a pendulum four times as long as another, will vibrate half as faft; and one nine times as long as another, will vibrate but one-third as faft, $\& \circ$. whatever may be the weight of their bobs. If the bob a, fig. 7 , Plate V. be fufpended by the thread $a b$, and let go at a, it will fall to d, and rife to c. This is called an ofcillation. At d, the bob will have acquired the fame velocity, as if it had fallen perpendicularly from g to d; and that quantity of motion will carry it up to c, by the forementioned law of ris inertia. In this are it would move for ever, but for the fric-
tion the point of fufpeafion b, and the refiftance of the air. Hence pendulums becomes fo ufeful in meafuring time; for a pendulum of 39.2 inches, will vibrate an aliquot part of the time the earth is in turning upon its axis: i. e. उठఫ ofcillations in a minute. When we fay that a pendulum of 89.2 inches will vibrate feconds, this muft not be underftood as holding. good in all parts of the world: every thing grows lighter as we approach the equator, and heavier as we approach the poles, from the greater centrifugal motion at the equator (occafioned by the diurnal rotation of the earth), which, according to fome is equal to $\frac{1}{85}$ part of gravity. Hence a pendulum of 39.2 inches would vibrate too flow near the equator, and too faft towards the poles*. And as we have feen, by the pyrometer, that metals expand by heat, the rods of pendulums grow longer in the torrid zone: contributing alfo to the irregular going of clocks and time-keepers.

The length of a pendulum is from its point of fufpenfion to its centre of ofcillation ; which centre is near the centre of gravity of the bob, if the rod be very light. But if a rod of equal thicknefs, $c d$, fig. 4, Plate IX. (without a bob), be made a pendulum, its centre of ofcillation is at two thirds of its length from the point of its fufpenfion; and it will vibrate in the fame time as the pendulum $a b$, fig. 4, Plate IX. The quantity of motion in the part $c e$, being equal to that of $a b$, if the point e be ftopt by any obftacle, the whole motion of the rod will be ftopt at once. Hence the centre of percuffion in weapons, being the fame as the centre of ofcillation, it becomes eafy to know where the ftroke would have the greateft effect.

[^5]From this rod, a national ftandard meafure might be conftructed; for a rod of 58.8 inches will vibrate feconds; but if it were the thoufandth part of an inch longer or fhorter, it would not vibrate feconds. Here then is an invariable and eternal ftandard: and why might not 58.8 inches be an ell, a yard, a fathom, or any other name? and a quarter of it, the depth and diameter of a bufhel? \&c.

We fay that all bodies have a centre of gravity, or a point on which they may be fufpended in every direction. We confider the whole weight of the body, as if it were condenfed or concentrated in that point : if this point, therefore, be fupported, the whole body will be at reft ; if not, it will always endeavour to fall the neareft way towards the centre of the earth. I endeavour to balance my cane upon my finger; after fome time, I find a place where neither end will preponderate: the part which refts on my finger is its centre of gravity.

2d. I place the piece of wood, fig. 5 , Plate IX. on the edge of a table, and from a pin at its centre of gravity, a, I hang the plummet d : the line of direction, a d, paffes within the bafe or foundation; and therefore the body does not fall, though it leans over its bafe.

3d. The centre of gravity always endeavours to get beneath the centre of fufpenfion. I hang the above piece of wood on the pin g, fig. 6 , Plate IX. and on the fame pin the plummet d; the line of direction ftill paffes over the centre of gravity a.

4th. Hence the centre of gravity, of any regular or irregular
plane figure, is eafily found. Suppofe the piece of board A, fig. T, Plate IX. be fufpended freely on a pin from the hole A, and on the fame pin be hung the plummet $g c$, and its direction be marked on the board. Now remove the pin and plummet to d, and then the board will hang as fig. 8 , plate IX. "and the plumb-line $d e$ will crofs the firlt line $a c$ at g, which is the centre of gravity of the board A.

In the motion of a chain-fhot, if one ball be heavier than the other, they will perform a circuit round each other as they fly; but their centre of gravity will defcribe a regular range; which will be a femiparabola. So the earth and moon, though they fly round each other in their aniual journey round the fun, neither of them defcribe a regular oval round him: it is their centre of gravity that performs the real orbit.
$5^{\text {th }}$. The tower $s a$, fig. 14, Plate V. has its centre of gravity at a : a plummet, c, let fall from it, and falling within the bafe, fhews it will fand firm: but if b is placed upon it, the centre of gravity will be raifed to s, and a plummet let fall from it, falls without the bafe; fo they will both fall.

6th. The tower of Pifa, fig. 11, Plate IX. leans fixteen feet out of the perpendicular: ftrangers are afraid to pafs under it. But if its materials will hold together, there is no fear of its deftruction; for let a plummet, c, fall from its centre of gravity, and it will be found to fall within its bafe or foundation (the feeple being nearly of the fame thicknefs from bottom to top, and of courfe having the centre of gravity in the centre of the feeple): therefore it is no miracle why the fteeple has ftood 300 ycars, and may ftand 300
more. Two towers at Bologna, one at Corfe-Caftle, one at Caerphilly, in South Wales; a wall at Bridgenorth, and an hundred more, all aftonifh the vulgar; who conceive they muft be kept up by fome fupernatural power! Not at all. There is nothing (well authenticated) that is fupernatural in the order of the world. Nature is uniform in all her works; and it would be happy for mankind, if when they are amufed with feats beyond nature, they would look out for cheat and impofture,

The difficulty of fuftaining a tall body upon a narrow foundation is evident, when I attempt to balance my cane with its end on my finger, fig. 9, Plate IX.; a is its centre of gravity ; now if I have not dexterity enough to keep the foundation on my finger, perpendicularly under the centre of gravity, the fick mult fall. Hence arifes the difficulties of the equilibrift. This artift holds a long pole acrofs the rope on which he dances, with great weights at each end, and keeps his eye upon fome object parallel to the rope; by which he can fee when his centre of gravity is on this or that fide of his flippery foundation, the rope; and by pufhing his pole on this or that fide, he can keep his centre of gravity over the bafe.

7 th. If a cylinder of wood, like a drum, with its centre of gravity at c, be placed on the inclined plane $a b$, fig. 11, Plate X. it will run down the inclined plane, becaufe that centre leans over the bafe g during its defcent. But if I fill the hole n with a plug of lead, the cylinder will roll up the inclined plane, till the lead gets near g; and then the cylinder will be in a fate of balance, and lie ftill on the inclined plane. Becaufe the centre of gravity is remored from c to n, by filling the hole n with lead.

Sth. The double cone rolls up two parallel wires, though one end of them is confiderably higher than the other, as fig. 12, Plate IX. But the centre of gravity of the cone is really at a, higher than at c and d. For as it rolls, it fimks in between the opening wires, and is in reality defeending, though it feems to afcend.

9th. The rolling candleftick, fig. 1 g , Plate IX. keeps the candle always upright, though rolled over a floor; for a weight a, beneath the candle, and alfo lower than the two centres of fufpenfion, $c c$ and $d d$, will keep the candle perpendicular; for the centre of gravity always endeavours to fall beneath the centre (or centres) of fufpenfion. The circle $d c d c$ hangs on two pivots, e and f; and the imner circle o n hangs on that circle by the pivots $d d$, at right angles to the pivots e and f. Thefe circles are called jimbals by feamen; and the compafs being hung on the imner circle, keeps always horizontal, notwithftanding the rolling of the fhip; by which the magnetic needle can traverfe as freely as if its point of fufpenfion were fixed on fhore.

10th. The nearer the centre of gravity and the line of direction coincide, the firmer any body fands on a plain. I fand firmer with my feet a little afunder, than if they were clofe. I lean forward when I have a load on my back, and backward when I have it on my breaft. When I rife from my feat, I lean my body forward, and draw my feet back: in all thefe cafes to bring the contre of gravity of my body over the bafe, my feet.

As the removal of great weights (or overcoming the force of gravity) is one of the great objects of mechanics, it is now time
we fhould explain the fix mechanic powers, by which this and other difficulties are overcome. But we fhould firft be inftructed in the momentum, or moving force, of machines or bodies.

1ft. If the roller a, fig. 3, Plate IX. lean againft the obftacle b, it will be found incapable of overturning it : but if a be taken up to c, and fuffered to roll down the inclined plane againft b, it will overturn it. We call the ftroke with which a ftrikes b, its momentum ; and that momentum is the quantity of matter in a, multiplied by its quantity of motion.

2d. We perform, in our days, greater feats with a fmall bullet, than the ancients did with their huge battering ram. Suppofe the ram, fig. 14, Plate IX. to be $27,360 \mathrm{lb}$. weight; and, being fufpended by its centre of gravity a, from the fupport b, that it could be influenced by manual ftrength to move againft the wall K at the rate of one foot in a fecond of time; then its quantity of matter multiplied by its velocity would be $27360 \times 1=27360$, its momentum. Now if a bullet c, of $2_{4} \mathrm{lb}$. weight, be fhot out of the cannon g, the ball will go as fwift as found; and that is. 1140 feet in a fecond of time; fo its quantity of matter, viz. $24_{1} 1$ b. being multiplied by its velocity $1140 \times 24=27360$, its momentum, or moving force, againft the wall K. Thefe two momenta being equal, their effect againft the enemy's wall or gate muft be equal ; and fhew that bodies may make out by velocity, what they want in quantity of matter, and vice versi.

3d. If a body falls upon airy plane, from the beighi of about one inch and a quarter, it wuill frike the plane with a momentum, equal to double its weight. I immerfe tiie ftick a, fig. ${ }^{1} 5$, Plate IX: in a tall veffel
of water; and upon the wire b I flip two brafs balls, each one ounce: by their weight they will fink the ftick, fo that the pin c ftuck in it will juft touch the edge of the veffel. I now take off one of the balls, and the ftick rifes out of the water a little: the remaining ball being then lifted up to d (one inch and a quarter above the top of the fick), and let fall on the ftick, it will fink it fo much, that the pin c will juft touch the top of the veffel, as when both balls were on the wire. This experiment is made in water, to prevent friction.

4th. It is equally fo with the heavieft bodies: if I lift one hundred weight from the floor, one inch and a quarter, and let it fall, it will ftrike the floor with a momentum equal to two hundred weight, \&c. Hence may be calculated the momentum of any falling body from any height, as fhells, pile-drivers, ftrokes of hammers, \&rc.: for as the laws of nature feem to be regulated by the fquares of numbers, if a falling body acquires a momentum equal to double its weight in falling one inch and a quarter, it will have twice that effect if its falls four times as high; three times that effect if it falls nine times as high ; \&c. \&c. Let the light fcalebeam ac, fig. 7 , Plate X. have a hole at c, and a hook at d; let a wire g pafs through the hole, and be faftened to the cieling of the room, tight. If this wire goes through one of the above brafs balls, as d, and it be let fall on c, from an elevation of one inch and a quarter, it will lift two ounces at a, and let go the flight fpring o. If now two ounces more be hung on a, as w, and the ball d be let fall five inches, it will lift both weights, as will be proved by its difengaging the fpring o. If then the ball d be let fall $11 \frac{1}{4}$ inches, it will lift three of the weights at a. If let fall twenty inches, it will lift four of thofe weights; four times four
making fixteen, \&c. \&sc. agreeably to the fquare root of the heights.
$5^{\text {th }}$. If I drop a ball into a pot of honey, and it finks to a certain depth in the honey, and then let it fall four times as high, it will fink twice as deep in the honey; nine times as high, and it will bury itfelf three times as deep in the honey ; \&c. \&c.

6th. If a fhell of 50 lb . weight were to fall from a height of feventy yards, according to thefe calculations, it would ftrike the ground with a momentum equal to 4600 pounds.

7 th. If a ftone in the road refifts a light carriage with a force equal to one pound; if the carriage runs four times as fwiftly over it, the fame obftacle will form a refiftance equal to two pounds; if nine times as fwift, the refiffance will be equal to three pounds; \&c. \&cc. I fpeak here of a light carriage, becaufe an heavy one, when put in motion, has a vis inertic that will carry it over any trifling obftacle, without any additional draught. This muft alfo be underftood of carriages that move with great velocity; for in a waggen, the flow motion obliges the horfes to overcome its vis inertice every moment of the draught; or as if the waggon were taken out of a ftate of reft every moment, into a ftate of motion. Hence fwiftnefs takes off greatly from draught ; and if that fwiftuefs did not fatigue horfes as much as draught, they would have lefs to draw the fwifter they zeent.

Percuffion, or collifion, is but an illuftration of that general law, that action and reaction are equal. If I ftrike an anvil with a laammer, the anvil ftrikes the hammer as forcibly as the hammer frikes
the anvil. If that anvil be large enough, a man may lay it on his breaft, and fuffer a ftrong man to ftrike it with a fledge-hammer with all his might, without the leaft pain or danger; for the wis inertic of the anvil refifts the force of the blow, and the man does not feel it. But if he had an anvil of no more than a pound weight on his breaft, fuch a ftroke would kill him.

2d. Let a be a little cannon, fig. 1 , Plate X. and b a hoilow piece of iron or brafs, to flip on pretty tight upon $c c$, and of the fame weight as a. Now if half a thimbleful of gurpowder be put in a, and b fhut upon it, both being fufpended by ftrings; if the powder be fired, the parts a and b will be thrown equally diftant from r, the centre where they hung; fhewing the reaction to be equal to the action. Hence an heavy gun feems to recoil lefs than a light one, on account of its greater vis inertic; otherwife its reaction is the fame, with the fame charge.

3d. Let two ivory balls be fufpended by threads, as fig. 2, Plate X .; if a be drawn a little out of the perpendicular, and let fall upon c, it will lofe its motion by communicating it to c, which will be driven to an equal diftance to what a fell, viz, to o. By laying a little paint on a, if it touches c, it will make a fmall fpeck upon it; but if it falls upon c, the fpeck will be much larger: fhewing the balls to be elaftic, and that a little hollow or dint was made in each by their collifion. Thefe hollows being equal, their reaction muft be equal, preffing both balls alike in contrary directions. Therefore the ball a, imparting its half to c, will give c (with its half) the fame momentum as a, and drive it to the fame diftance, o; while a lofes by the action and reaction its momentum, and becomes ftafionary. So if two foft clay balls met each other with equal velo-
cities, they would ftop and ftick together at the place of their meeting, as having no elafticity.

4th. But of three elaftic balls, c, a, and n, hung from three joining centres; if n were drawn a little out of the perpendicular, and let fall upon a, then would n and a become ftationary, and c be driven off to o, the diftance n is from a. Fig. 3, Plate X.

5th. From the fame elaftic caufe, if eight balls (or any other number) were hung to as to touch each other; if the two outfide balls were drawn off a little diftance, and let fall upon the other fix, the two balls only on the oppofite fide would be driven off, while the reft would remain ftationary; fo equally is the action and reaction of the ftationary balls divided amongft them. Fig. 5, Plate X.

6th. If three of the above eight balls were drawn a little on one fide, and let fall on the other five, the three outfide oppofite balls would be driven off as far from the reft as the three firft fell, while the other five remained ftationary. Fig. 4, Plate X.

SECTION II.

The Mechanic Powers.

COMPLEX as many machines may appear, they are only made up, more or lefs, of fix mechanic powers, viz. the lever, the
wheel and axle (or axle in peritrochio), pullies, inclined plane, the wedge, and the fcrew.

A lever is a bar of any fhape, long, fhort, round, fquare, flat, taper, \&xc. It is ufed to raife great weights a fmall diftance, and is of three kinds. The lever of the firl kind has its fulcrum between the weight and the power, as F, fig. 6, Plate X. ; the end of the lever $t s$ being fuppofed a balance for the other part of it, $s r$. From s to t is called the acting part of the lever; and from s to r the refifting part of it: and it is as the alting is to the refifting part, that we gain an advantage over the body to be lifted ; $i . c$. if the acting part $s t$ be four times the length of $s r$ (eftimated from the fulcrum s), then will 1 lb . hung at t balance 41 l . hung at r. Confequently I could lift four times as much with this lever, as I could by main ftrength. A fcale beam is a lever of this kind: fig. 8 , Plate X.: its centre c is the fulcrum, and the fpot n its centre of gravity ; and the nearer the centre of gravity and the fulcrum can be brought together, the nicer and inore delicate will be the beam. Now, if two equal weights, s and t, be hung at equal diftances from the fulcrum, they will balance each other, and the beam will be at reft; becaufe the centre of gravity of the beam and weights is now at o, directly under the point of fufpenfion. But if t were removed to a, then the centre of gravity would not be under the point of fufpenfion c : and as it is a law of nature, that the centre of gravity always endeavours to fall or get beneath the centre of fufpenfion, or as low as it can, hence we fee the reafon why that end of the bean preponderates; and why a fimall weight hung at a will balance the great weight s. On this obvious principle hangs the whole docfrine of mechanics; for we only fubftitute time or motion in the place of power, in all machines intended to affift
animal ftrength. For if I apply my weight at a, and can lift four times that weight at s, I fhall defcend at a four times the diftance that the weight s will rife. For if one man can raife by a machine as much as ten men could by main ftrength, he will be ten times as long about it. If s, therefore, be 81b., 21 lb . at a will balance it, and the beam will be in equilibrio ; for the momenta of the two arms, their weights, and motions, are exailly fo. Suppofe, then, that the weight a hangs twelve inches from the fulcrum c, and we call that its motion ; this being multiplied by its weight, olb., gives twentyfour for the momentum of the $\operatorname{arm} c a$. Now the weight s muft hang three inches from the fulcrum c to balance a, for three times eight makes twenty-four, as well as two times tivelve ; fo the two arms balance each other, like the Dr. and Cr. fides of a merchant's ledger. On this primciple depends the fteel-yard, fig. 12, Plate X. where if a hangs ten times the diftance from the fulcrum c that b does, then will a balance ten times its weight at b; and if put into motion, will move ten times as far. This lever may alfo be multiplied, fo as to become infinitely powerful. Suppofe at a, fig. 13 , Plate X . there hangs 27 lb ., and that the acting part of this lever, $b c$, be three times the length of its refifting part, $b a$; in that cafe (agreeably to what has been proved), 9 lb . of ftrength applied at c will balance the 27 lb . hanging at a, being one third of it. But to overcome the faid glb. I apply the lever od, of the fame acting and refifting powers as the laft; fo that $3_{1} \mathrm{lb}$. of ftrength applied at d, will balance the glb. at o. But not fatisfied with this, I apply another lever $r s$, whofe acting is to its refifing part as three to one, as before, to overcome the glb., and reduce the power to 1 ib . So that 1 lb . hanging at s, will balance 27 lb . hanging at a; and if put into motion, will move twenty-feven times as far: fill being only a fubftitution of time or diftance in the place of actual power. The heavieft waggons are weighed by compounded levers of a fimilar
principle. Handfpikes move the heavieft guns; and the largeft trees are torn up by the roots; as thus, fig. 1, Plate XI. - a ftrong fcantling is fixed on the ftrong axle of the cart-wheels c; it is then tied to the tree at r; when the lateral roots of the tree are cut, by digging a trench round it, the tap roots are eafily torn up by a team of two or three horfes; for the tree itfelf becomes the lever, and the axle of the wheels its fulcrum : the fame wheels become a carriage for the tree to the place where it is to be tranfiplanted.

Plycrs, pincers, fciffars, hammers drawing nails, \&c. are all levers of this kind.

The lever of the Second kind has its acting and refifting parts on the fame fide of the fulcrum, as $a b$, fig. 14, Plate X. : $a b$ is the acting, $b c$ the refifting part of this lever; and as the acting part is four times the length of the refifting, 1 lb . hanging over a pulley at a, will balance 4 lb . hanging at c.

This is the principle of a wheel-barrow: b may be confidered as the wheel, which is the fulcrum, c as the load, a as the hands of the labourer. Hence the reafon why a man can carry two, three, four, \&c. times the weight in this machine, he can by main ftrength.

A four-wheel carriage is a lever of this kind. If the centre of gravity of the load be half way between the fore and hind wheels, then will the acting part of the lever be twice the length of the refifting, as fig. 3, Plate XI. For when the wheel a comes to the obftacle c, there will be but half the weight of the load to pull over it, becaufe the acting part of the lever $a b$ is twice the length
of the refifting part $b 0$: it is true, that when the hind wheel b comes to the fame obftacle, the other half of the weight muft be pulled over it; for then the acting part of the lever will be $b a$, the refift$\operatorname{ing} a 0$: in the firft cafe b was a fulcrum, in the fecond, a. Though the fum of thefe two refiftances is equal to what they would have been had the load been on one pair of wheels, yet by the four wheels the difficulty being divided into two parts, gives a lefs check to the draught of the horfes; and it is remarked, that nothing damps the ardour of that fpirited animal fo much, as fudden jerks or checks in his draught.

A knife, moving from an hinge at one end, as a, fig. 2, Plate XI. is a lever of the fecond kind: if from a to the handle b be four times as far as from the fulcrum a to the wood to be cut at c, then with fuch a knife. I could cut the wood with four times lefs exertion, than by a common knife of equal fharpnefs.

The lever of the third kind has its acting part florter than its refifting part, requiring more exertion than would be neceffary to lift the body by main ftrength; like rearing a ladder againft a wall, or holding my cane (at one end) horizontally between my finger and thumb. Fig. 4, Plate XI. will explain it better ; a is a weight to be lifted by the weight b pulling at c, over a pulley; d is the prop, or fulcrum. Now as the acting part of the lever, $d c$, is but one fifth of the refifting part, $d o$; therefore b muft be five times as heavy as a, or it will not balance it.

Of this fort of lever are the limbs of all animais. My arms, legs, fingers, are fuch: the legs of quadrupeds, the wings of birds, and the fins of fifhes.

The bone from my fhoulder to my elbow is fingle; that froin my elbow to my wrift double; (for the wife and ufeful purpofe of turning in every direction). From the fhoulder-blade c, fig. Io, Plate XI. there are two mufcles that terminate a little below the elbow at e; by the fwelling of which (as at d), the arm or lever $n o$ is enabled to lift the weights. So that the bones $n o$ are reprefented by the lever $d 0$, in the laft figure; the weight s, by the weight a; the elbow n, by the fulcrum d; and the mufcles $c d$, by the weight b pulling at c. Hence if the diftance $n s$ be fix times the length of the acting part of the lever $n c$, and the weight s be 1oib., then muft the contraction of the mufcles at d be equal to fix times 101b., or 6olb! Why has nature affembled fuch a quantity of mufcles in the calf of my leg ? Becaufe I was to lift my whole body, and walk by them. To pufh myfelf forward in walking, it was neceflary that the refifting part of the lever, from my ancle to my toes, fhould be much longer than the acting part, from my heel to my ancle, to have more fcope on the ground; and that the contraction of the mufcles need not be too great. Accordingly, the foot, confidered as a lever, has its acting part very fhort, and put in motion by the tendo Acbillis, a ftrong fibrous tendon attached to the heel, and ending in many ramifications among the mufcles of the calf. It is a little mortifying to the pride of inveftigation, to think that a reafon cannot be given why we can bend one of our fingers: we talk learnedly of the living, or fentient principle, of mufcular motion, and mufcular irritability ; but we know nothing on this fubject after all! We know that limbs are levers; the coupling of the bones, fulcra; that they are moved at will by a commanding mufcle or mufcles: but what is it that informs thofe mufctes? There we ftop. The philofophy that has attempted to go farther, has hitherto been bewildered in obfcurity, conjecture, and
jarring opinions: the mind has launched into an ocean, feemingly without bottom or fide; perhaps, too wide and too deep for human faculties: for the few truths we feem qualified to attain, come beft through the channel of the common fenfes. What we can fee, hear, feel, tafte, \&xc. we can reduce to experiment, obfervation, and comparifon; and from theie form fome probable conjectures, at leaft, what is their defign in the general order of nature.

The rubcel and axle, or axle in peritrocbio, is the next mechanic power ; and may be confidered only as a number of levers acting round one general fulcrum, or the gudgeon or centre on which the wheel is fufpended. A radius, or fpoke of the wheel, being the acting part of the lever, and the radius, or femi-diameter of the axle, the refifting part of it. In fig. 5, Plate XI. $a b$ is the wheel, $c e$ the axle, d the gudgeon or centre. So that ad (the radius of the wheel) is the acting part of the lever ; and $d e$ (radius of the axle) the refifting part of it: hence if $a d$ be twice the length of $d e$, then 1 lb . hung at a will balance 2 lb . hung at e (agreeably to the doctrine of the lever) ; and fhews that wheels are to their axles as their diameters, and what is gained in power is loit in time. This may be better underftood by infpecting fig. 6', Plate XI. where the axle in peritrochio is feen in profile.

Cranes for raifing goods out of, or into, fhips, warehoufes, \&ic. are principally of this mechanic power ; capftans, windlaffes, \&c. Cranes are of various conftruction. The wharf crane is fometimes moveable on a poff fixed in the ground, as a, fig. 7 , Plate XI. on which the machine and operator are both fupported : a cogwheel, c, is fixed on the axle 0 , into whofe teeth the pinion d works by the handle b. Now if the crank handle $b d$ be five times the femi-diameter of the
pinion d, then is the acting part of the lever five times the length of the refifting part; and I turn by this handle the wheel c, with one fifth of the ftrength neceffary to pull it round by its teeth. But the wheel c being twice the diameter of the axle 0 , this doubles the forementioned power; fo that by thefe two powers I gain an advantage of ten; being able to raife ten times the weight I could by main ftrength, allowing for the friction of the machine. The pulley r only changes the direction of the draught, but gives no mechanical power. So the whole turning on the poft a, the package s can eafily be turned from the wharf over the fhip, and let down into it.

The capftan has its power from the fame principle: it is a long cylinder of wood, with holes in it for handfpikes, like a, fig. 9, Plate XI. The acting part of the lever is, therefore, from c to d, the refifting from c to s; (where the cable n is coiled round the capftan). Now if a man's weight be applied at d, and $c d$ be ten times the length of $c s$, then will the rope $n s$ pull ten times his weight, allowing for friction, which in the capftan is very great, as the centre on which it turns muft be nearly as thick as the capftan itfelf, when a thip is to be held at anchor by it.

The large circular crane in which a man or horfe walks, and which is actuated by his weight, is a cumbrous machine, and of trifling power. The man can feldom climb higher up the wheel than to a, fig. 11, Plate XI. fo that the line $c o$ is the acting part of the lever, and d o the refifting part: now if $c o$ be only twice the length of $d o$, then can the man raife only double his weight; allowing alfo for friction, and the vis inertice of this unwieldy machine.

The zoindlafs has its axle generally beneath the furface of the ground, as a, fig. 12, Plate XI. turning in ftrong and fixed timbers: it is actuated by radiant handfpikes, as s, fometimes by men and fometimes by horfes, coiling up the rope or chain q. Now if each handfpike be ten times the length of the femi-diameter of the svindlafs, and there be eight handfpikes, then $10 \times 8=80$, which is the power of this machine.

SECTION III.

Pullies.

THE SINGLE PULLEY, unaccompanied by other powers, is not a mechanic power, for it gives no mechanical advantage: it ferves to change the direction of a draught; and it gives a man an opportunity of applying his weight, inftead of his mufcular ftrength: but in this way he can lift no more than his weight ; and without multiplication, no machine is faid to have mechanic power.

If two fheaves be in the block a, fig. 13, Plate XI. and one in the block b, this affemblage will have a power of three, thus; faften the rope to the lower block at c, and carry it over the nearer fheave in the upper block, then under the fheave in the lower block, and over the farther theave in the upper: the end of the rope being now held by the hand at n, it is evident the weight w will be fuftained by three ropes; and as all the ropes are equally ftretched, of courle each rope fuftains one third of the weight: now the
hand n pulls but at one of the ropes, of courfe but at one-third of the weight; therefore the power of pullies, fo fyftemized, is as the number of ropes next to the weight, and the hand n will fall three times as far as the weight wo will rife; fhewing that what we gain in power we always lofe in time or motion.

The weight w, fig. 14, Plate XI. hangs by fix ropes; and of courfe the power is fix. But as the greateft ftrefs is on the fheave a, over which the rope comes laft (on account of the great friction in pullies), and as the centre of preffure, as well as the centre of gravity, always endeavours to get under, or in a line with, the centre of fufpenfion, the ftrefs on a, when the rope c is pulled, forces a under b, the centre of fufpenfion; making the fheaves to rub fo much againft the block, as to make the friction nearly equal to all the power. This renders multiplication in pullies very limited; it is feldom that more than three or four fheaves can be ufed with convenience. But the late ingenious Mr. Smeaton obviated this objection, by making the fall, or rope, c, to come over the middle fheave inftead of the outfide one: by this means the block is kept perpendicularly under b, and the fheaves have no friction but on the centre on which they turn. This block, fo ufeful for ftretching the fhrouds of fhips, raifing mill-ftones, \&cc. may be eafily underflood by a mere infpection of fig. 15 , Plate XI.

It may be feen in this pulley, that it muft always confift of an uneven number of fheaves, as three, five, \&ic. : this confifts of three large fheaves, and three fimaller, in each block; they are made fo that the ropes need not rub on each other, and occafion unneceffary friction. To reeve this block, we faften the end of the rope to the upper block, as at a; then carry it under the firft large fheave in
the lower block ; then over the firft large theare to the right hand in the upper block; then over the firlt fmall fheave in the lower block to the right hand; then over the firft fmall fheave in the upper block; then to the fecond in the lower ; then to the fecond in the upper, and fo through all the fmaller fheaves: then to the firft large fheave on the left hand in the lower block; then to the fame in the upper block; then to the fecond in the lower block; and then end at the middle large fheave in the upper block.

The running block doubles whatever power went before it, thus: the weight w, fig. 8, Plate XI. is fuftained by the two ropes a and b; now if the rope b be faftened to any thing, and a be pulled at, the pull need be but equal to half the weight, becaufe the rope b fuftains the other half: fo c is called a running block. But a fyftem of running blocks may yet make the doctrine more evident. The weight w, fig. 16 , Plate XI. is fuftained by the ropes a and b, each fupporting one-half of the weight. Now if b be faftened to the crane d, then to pull at a would be to lift only one-half the weight w. But we will apply another runner to fuftain a, by the two ropes c and e. Now if e be faftened to the crane, then c fuftains half the weight of a, or one fourth of the original weight w. But fufpending the weight of c by the two ropes o and n, and tying n to the crane, then does o lift but half of c, or one eighth of the original weight. The uppermoft pully only changes the direction of the rope, and adds nothing to the power. So that the loweft runner doubled the power, the next doubled that, and the next doubled the laft, \&c. \&c.

Hence if the weight w, fig. 8, Plate XI. be pulled at by the rope a with its other end fixed at b, the pulley c doubles the power, being a running block.

THE WEDGE. This power is applied to cleave wood or ftone; to feparate heavy or cohering bodies: even the largeft fhips can be raifed by an affemblage of wedges. The power of the wedge is as its length is to the thicknefs of its back. Let a, fig. 17, Plate XI. be the wedge, c and n two cylinders, hanging by their centres from the beain d, and pulled againft the wedge by the weights r and s (reprefenting the refiftance to be overcome by the wedge). Now if s influence c, and r influence n, with each a force of 2 lb . then 4^{lb}. will be the difficulty to be overcome: and if the length of the wedge be twice the length of the thicknefs of its back, then will it be found that the wedge and it weight, $0=2 \mathrm{lb}$., will balance the 4^{lb}. of refiftance; fhewing that the ftroke of a hammer $=2 \mathrm{lb}$. would overcome 4 lb .; or, that the power of the wedge is as the thicknefs of its back is to its length.

This is true, where cylinders or bodies with little friction are to be feparated: but where a blunt wedge is to penetrate a ftone, or a piece of tough wood, a ton weight laid upon it would fcarce force it in ; when a fmart ftroke of a hammer, whofe momentum was not a quarter fo much, would do the bufinefs. So, whilf I vainly endeavour with all my weight to force a nail into wood, the fmalleft tap with a hammer will do it effectually. Perhaps the finartnefs of the ftroke may derange the cohefion of the body, and by making a quick vibration among the particles, difpofe them for feparation. But if it be confidered that the momentum of a hammer has both the velocity with which it moves, and its weight multiplied together, and thefe concentrated into a momentary force, it appears ftrange that its effects flould be confidered as a myftery.

THE INCLINED PLANE is, in reality, but fationary wedge; by it we eftimate the power neceffary to drag carriages up-hill, the defcending force of rivers, \&xc. ; and its power (like the wedge) is as its lengtb to its beight. Let a c, fig. 18, Plate XI. be an inclined plane, rifing one foot in three; or whofe length, $a c$, is three times its height, a d. Now, if a cylinder or roller n be $3^{l b}$. weight, 1 lb . o, hanging over the pulley r, will be found to balance it ; or, I fhould drag the weight n with three times lefs exertion up $a c$, than I could lift it perpendicularly from d to a; but in this cafe, I move it three times as far: flewing, both in the wedge and inclined plane, that we only fubftitute time in place of power. This is the reafon why roads fhould wind zig-zag up fteep hills, to flatten the declivity, though it increafes the length. The draught of a carriage of any weight, and on any kind of road, may be eftimated by means of the inclined plane, thus: provide a board or box, $a b$, fig. ${ }^{24}$, Plate XI. capable of holding pebbles, mud, fand, $\& i c$. and which can be raifed at one end by the forew d. When $a b$ lies flat on $c b$, the carriage n will be at reft ; the fcrew now raifing $a b$ leifurely, the carriage will, at a certain height, fet off of itfelf, and roll down the plane. Here then are we in poffeffion of a triangle, that folves what force is neceffary to drag any load, on any kind of road, on level ground; for the hypothenufe $a b$ reprefents the weight of the carriage, and the perpendicular $a c$ what portion of that weight is neceffary to draw the carriage on level ground. Suppofe the carriage 12 cwt ; the line $a b=24$, and the height $a c=3$: the declivity then is as 3 to 24 , or as 1 to 8 . In this cafe it will be found, that one eighth of the weight of the carriage would drag it in fuch a road on level ground, viz. $1 \frac{1}{2} \mathrm{cwt}$. But if the road was very deep or rough, the road might be raifed,
perhaps, as high as s, before the carriage would fet off. Now if $c s$ were half the length of $s b$, then would it require one-half the weight of the carriage to drag it on level ground, or in the above cafe 6 cwt. This rule is univerfal, and has been proved by carriages at large, on roads of every defcription. In eftimating the draught up hill, the draught on the level muft be added to it. Suppofe the hill rifes one foot in four; then one fourth part of the weight muft be added to the draught on level ground. If the weight (as before) be 12 cwt . then one fourth of it would be 3 cwt. and its draught on the level was $1 \frac{T}{2}$ cw't. thefe two make $4 \frac{\pi}{2}$ cwt. the real draught neceffary to draw 12 cwt. up a hill rifing one foot in four, \&c.

THE SCREW is but an inclined plane, wrapt as it were round a cylinder, as a, fig. 20, Plate XI.; its power, therefore, is as the leng-th of its thread to its beight; or as the hypothenufe $c d$ is to the perpendicular $c c$; or as the circumference of one thread is to the diftance of the threads from one another. May not the lever, the wheel and axle, and the pullies, be all confidered as only modifications of the lever? and, for the fame reafon, the wedge, inclined plane, and the fcrew, but as modifications of the wedge? May not, therefore, the fcrew, influenced by the lever, be confidered as the quinteficnce of all mechanic power; and that there is, in reality, but two mechanic powers inftead of fix?

SECTION V.

On Friction.

FROM thefe calculations, however, confiderable deductions muft be made, for unavoidable friction, and the imperfect manner in which machines are generally made. Friction is faid to be of two kinds, the rubbing friction, and the friction by contact: the firft may be reprefented by a locked coach-wheel dragging on the road; the fecond by the wheel touching the ground in its ufual motion. If the axles of wheels, the gudgeons of mills, and other parts that rub, be polifhed as well at poffible, there will ftill be in them little eminences and little hollows, which, locking into one another, produce the impediment called friction of the firft kind ; this is, perhaps, the leaft when well polifhed iron and bell-metal rub on each other. Friction-wheels, however, do little good, except in machines whofe rapid motion would fet them on fire: in heavy machines they wear into notches, and are too liable to be out of order, to be ufeful. But the enormous fone in the grand fquare of Peterfburgh was moved on fteel balls, fig. ${ }^{5}$, Plate XI. Bridges over canals frequently can be turned out of the way of boats by moving on friction-balls, fig. 22, Plate XI. So the heads and fails of windmills, the domes of obfervatories, \&cc. can be eafily turned on frames of friction-rollers; as well as the fheaves of common pullies, mangles, \&cc. Fig. ${ }^{2} 6$, Plate XI. though ftraight, may reprefent a part of the round bottom of a dome ; $a b$ the wall plate $; c d$ bottom of the dome; $c n$ the frame going round the dome, containing the friction-rollers at proper diftances from each other ; on which a
heavy millhead, or dome, may be turned round by the hand. So in the pulley, fig 19, Plate XI. if the axle a be touched only by the friction-rollers (kept in a circular frame at a proper diftance from each other), and the pulley p turn on their outfide, three men are faid to lift by this pulley as much as five with the ufual one. The moft ufual mode of ufing friction-wheels is as in fig. 21, Plate XI. where the wheels a and b form a notch for the axle c to turn in ; a and b do not touch, but are very near one another, and turn on fmall pivots almoft without friction. Two fimilar wheels being on the other fide of the large wheel N, fupport the other end of the axle c. Thefe are the ufual applications for diminifhing friction; and where it is not diminifhed by fome of thefe methods, we generally, in machines confifting of three or more powers, allow one third for rubbing, and imperfection.

A common crane will ferve for an example, fig. 23, Plate XI. We begin the calculation firlt with the crank-handle a, which is five times as far from the centre of the pinion b, as the teeth of the pinion ; according to the principles of the lever, I gain five by this handle: the next power is the wheel and axle; the wheel W is made purpofely to be twenty times the diameter of its axle c (round which the rope of the crane is coiled); by this power I gain an advantage of twenty: fo five times 20 is 100 , the power of the crank-handle ard the wheel and axle together. Tracing the power along the rope d, it paffes over the pulley e, which changes its direction, but gives no power. We then come to the weight P, which hangs by fix ropes, but the axle c is pulling but at one of them; fo this affemblage of pullies multiplies the former advantages fix times; then fix times 100 is 600 , the theortical power of the whole machine: and I fhould go with my hand (at a) 600
times as far as the package P would rife. But, by trial, I foon find I cannot raife 600 times as much as by main ftrength : the rubbing of the axles of the wheel and pinion, the contact of their teeth, the coiling of the rope, and the allowance for pullies, is onehalf for friction ; altogether, one third muft be allowed for friction, and the imperfect manner in which machines are commonly made; fo that inftead of faying, according to theoretical calculation, I can by this machine lift 600 times as much as I could by main ftrength, I can in reality lift but two thirds of it, or 400 times as much.

This crane is made in a variety of ways, both for convenience and force ; and has generally the projecting part x to turn on a ftrong hinge at e, for the convenience of landing, fhipping, or houfing of goods.

Informed of our power, we can, by thefe means, eafily calculate what that power can produce. A middle-fized horfe can draw for eight hours in a day, with a conftant force, equal to 32 lb . What load can he draw upon a plain road as a momentary exertion? Suppofe the declivity before the carriage fets off of itfelf to be one inch in 32 (fee page 104), then $3_{2} \mathrm{lb}$. multiplied by 3^{2}, the declivity, is 1124 , or fomething more than 10 cwt . for a few minutes.

2d. A plough requires, in common land, 80 lb . to draw it ; hence two, and generally three, horfes are yoked to it.

3d. I have a brook, with a fufficient fall, in my eftate, that with penning will afford me 300 lb . of water to act upon a wheel ; but a millftone requires 600 lb . force to carry it fixty times round in a minute (its proper velocity). I muft in that cafe make the cog-
wheel (which overcomes the refiftance) but half the diameter of the water-wheel : by this means I make 300 lb . of power overcome 600 lb . of difficulty.

4th. I want to raife a hundred weight of water out of a well, at one draught : the horfe draws, in common, little more than 30 lb . and that is contained nearly four times in 112 lb .; fo the wheel round which the horfe's rope is coiled muft be nearly four times the diameter of the axle round which the bucket rope is coiled, and the horfe will draw it up with eafe, walking fraight forward.
$5^{\text {th }}$. I want to drive piles into the ground, that require a ram of 15 cwt .; what number of men muft I hire to work it? A working man weighs, at an average, about $1 \frac{1}{2} \mathrm{cwt}$. fo that ten men muft be hired, to draw it up about fix feet, and then fuddenly to let it fall on the head of the pile.

6 th. I want to raife a ftone to the top of a building of 200 lb . weight, the rope to go over a pulley hung at the end of a projecting beam above the top, and to go under a pulley fixed in the ground; what number of horfes will this require? In the firft place, thefe pullies give me no mechanic power ; but rather add to the difficulty by their friction. If then a horfe's power is 32 lb . there is fix times 32 in 200 , fo that fix horfes will be required. But for a fudden and fhort exertion a horfe will exert feveral times the power he does in ordinary draught; upon fuch an emergency, therefore, three or four horfes would do it.

From fuch confiderations as thefe do we calculate the fize of wheels, the length of levers, \&c. for every mechanic purpofe.

SECTION VI.

On the Wind-mill.

THIS machine is capable of being turned fo as to face any wind, by having its top or dome fuftained on fuch friction-rollers as are defcribed page 106. The eafe, therefore, with which the fails, the axle, and cog-wheel, contained in the dome a, fig. 2, Plate XII. can be turned to the wind, depends on thefe, and the multiplying powers of the fly-wheel e. This wheel confifts of a number of triangular thin boards, each forming an angle of 45° with the plane of the wheel. On the axle of this wheel is a thread, or fcrew, which fits into the teeth of the wheel 0 , and gives motion to it; this wheel turns on an axle, whofe pivot is in the fupport, denoted by the fpotted lines, and its other end is in a focket faftened in the dome : on this axle is the pinion \approx, which turns in a fixed contrate wheel, on the wall plate of the mill. When the wind changes from the principal fails, it infantly puts the fly-wheel e into motion; this turns the wheel 0 , whofe pinion \approx, not being able to turn the fixt wheel on the wall, is turned itfelf, and with it, the fails, the dome, and all that it contains: this effect continues till the fly-wheel gets into the lee of the dome; it then ceafes, and the fails being brought to face the wind, are put into motion. Hence fuch a mill always turns iffelf to the wind, preventing the care of fervants. The great fails produce an equal motion in an high or low wind, by being clothed with half-inch boards inftead of canvas: thefe little doors are pufned open by a ftrong gale, and they thut when the wind is weak; fo that by playing with the momentary inequalities of the wind, a quantity of furface is always prefented
in proportion to the impulfes of it. A pin is ftuck into the corner of each door, as at π, and all the pins are united to a cord, which paffing over the pullies u, is faftened to a wire, x, going through the axle m : on the other end of this wire is a nut, turning in the refifting part of the crooked lever s; fo that the motion of the fails does not interrupt the operation of the weight k, which can be made more or lefs, according to the fpeed the mill fhould goat. That the wind may have its full effect upon the fails, one fail fhould not fucceed into the place of another before the wind has refumed its regular current; for, acting upon inclined planes, it is interrupted, and obliged to pufh by, and give an impulfe to every fail in its paffage: hence it is found that five fails are a maximum; i. e. they are better than four, and better than fix. Wind has the greateft effect upon inclined planes, that form an angle of 45° with its direction; but as this inclination offers fo great a furface of refiftance to the rotatory motion of the fails, it is found that 30° near the axle degenerating gradually to 5° towards the end of the fails, is beft. A mill of this conftruction, with each arm or fail feven feet long, is equal to the ftrength of a man.

Horizontal wind-mills are weak in comparifon of thofe whofe arms are inclined planes; for, by giving way, or falling back from the impulfe of the wind, like a fhip, the power is not half what it is againft a plane that ftands firm againft the wind But the advantage of going round always the fame way, with every wind, without attendance, may, in fome cafes, be thought adequate to the want of power, the vaft expence of building, and the unfightly tower it exhibits when built.

The reaping machine is actuated by a horfe, and may be ufeful
when corn is full ripe, and hands cannot be procured to reap it. Fig. 5, Plate XII. is a ground-plan of the machine ; and fig. 3, its elevation. The bottom plate, a, is of ftrong fleet-iron, to which is welded or rivetted the fteel points $c c c$, each of which has a fharp edge on the fides $x x$. The wheel s is of iron, and has feven knives fixed upon it, their cutting edges at $g g$. This wheel, with its knives, is put in circular motion by the pulley n fixed on its axle, between the two plates a and d (fee the elevation). This pulley has motion given to it by the cord $m \mathrm{~m}$, which goes round the wheel $z z$: and the wheel z has a pinion, $i i$, on its axle, whofe teeth conform to the cogs of the perpendicular wheel $q q$. The wheel $q q$ is on the axle of the two cart-wheels $k k$, and thefe are put into motion by the horfe, which pufhes the machine forward at his breaft, as in mills that are actuated by horfes. The fteel points $c c$ are pufhed in:to the corn, and ferve not only to hold it faft while cutting, but their flarp edges $x x$ become half a pair of fhears or fciffars, and the circulating knives the other, by which the corn is cut, and falling on the platform s, is fwept by the rod u (fixt on the axle of the wheel n) off the platform, and laid out of the way of the cart-wheel, fo as to be eafily bound up into fheaves. But when the machine returns, the lever u would throw the cut corn among the ftanding corn; it muf, therefore, be takeri out of its focket, and the rod w put in its place, the point of which, o, fands perpendicularly, and catches cevery revolution a lever or rod turning on the fulcrum p, and fweeps off the cut corn, laying it like a fwath on the fide already cut. This lever ought to have a 「pring to bring it back, when difengaged from the pin 0 , and a joint or hinge to prevent its fwecping the cut com the wrong way. The fingle wheel r is to fupport the fore-part of the machine, and may be fixed higher or lower, fo as to make the fubble flort or long. A femi-collar is made to
fit the horfe's breaft, and fo fixt, that he may be eafily difengaged : a boy may turn and manage the machine.

The drawings of this machine are on a fcale of an inch to a foot. A horfe will cut a fwath two feet wide, as faft as he can walk; or rather more than could be reaped in the fame time, and in the ufual way, by fix men.

The thrafbing macloine, fig. 1, Plate XII. is made to ftrike the corn and ftraw both before and behind, and more effectually to beat out the grain than when ftruck in the ufual manner, all one way. A man fpreads out the fheaf on the finooth inclined plane a, againft which the rough roller c draws in the fheaf, and holds it fo faft while it draws it through, that the fiwinging flails (ftriking it in a contrary direction) may beat out all the corn in its paffage. The flails g hang by hinges on the axles of the two wheels x and n, which are put into motion by the firft mover, the large wheel w. The grain and ftraw fall on the grating F, the grain falling through, while the ftraw is toffed off This machine may be worked by wind or water, man or beaft.

SECTION VII.

The travelling Corn-mill. Fig. 10, Plate XIII.
THIS mill depends on the draught of a horfe and the friction of the road for its motion. It is meant to move round a grecn, or any fmooth road, and to travel from one houfe or village to an-
other. $a b$ is a fquare frame of fcantling, fixed on the fhafts of a common cart: in this frame is fixed the cafe c, which contains the iron mill-ftones d; the upper ftone, as ufual, turned and fupported by the trundle or pinion e (the fupport of which, and its regulator, camot be reprefented in the drawing, but are the fame as in a common mill). The iron part of the fpindle that is fixed into the ftone is fupported on three or four friction-wheels, to keep the ftone fteady when any inequalities are in the road; and which can, by fcrews, raife or deprefs the ftone according to the finenefs of the flour required, or the grain to be ground. A circular fyftem of friction-rollers, like fig. 19 , or 26 , Plate XI. would fill do better. A cog-wheel, A, is fixed on a fquare part of the axle of the cartwheels, and is about a foot lefs in diameter. This cog-wheel can be eafily feparated from the trundle c, when the mill travels from one place to another. Inclining under the ftones is the boltingfieve $\approx \approx$, reprefented by fpotted lines, with teeth that act in the trundle e. The flour is ejected from the frones into this circulating fieve, and falls through it into a clofe cafe that depofits it in the bag \dot{j}; while the bran flowing through the length of the fieve, is received in another bag. The ftones fhould be about three feet in diameter (if of caft-iron, fo much the better), and the whole machine covered. It is conceived, one horfe will draw the mill and a miller, and grind a bufhel of wheat in travelling about one mile and an half.

EXPERIMENTS

TO ASCERTAIN THE EXCELLENCES AND DEFECTS OF

WHEEL CARRIAGES:

> From whence Deductions are made for the Improvement of Coaches, Carts, Waggons, ©c.

SECTION VIII.

IIN a country where mechanics have made fuch a progrefs, where almoft every operation for either ufe, convenience, or pleafure, feems nearly to have reached its ultimatum, it is wonderful that fo little improvement has taken place in the mechanical part of our wheel carriages : in the ornamental part, I grant, art and ingenuity have gone fo far towards perfection, that all nations do homage to this, by having their more elegant carriages made here. Had there been the fame attention paid to their mechanical conftruction, and to the eafe of the much-abufed animals that draw them, the following experiments had not been made. I fhall, therefore, take upon me to plead the caufe of that firft of quadrupeds, a horfe; and if I am happy enough to excite any efforts in favour of his eafe or comfort, I fhall cfeem it more than a reward for what I have done with an intention to ferve him.

Before we enter upon the difficulties which wheel carriages have to furmount, it will be neceffary to examine the formation of the animal by which thefe machines are put in motion. A horfe, confidered as a machine, is admirably conftructed for motion, draught, or fuftaining weight. His limbs, confidered as an affemblage of levers, would require a volume to point out the wonders in their contrivance, and that of the mufcles by which they are actuated: but the formation of his fhoulders is the fubject to which I wifh to direct the reader's attention.

It is evident, that at the place where the neck rifes from the cheft of the horfe, the fhoulder-blades form the refting-place of his collar, or harnefs, into a Mope or inclination; and as this flope or inclination forms an angle, with a perpendicular to the horizon, of about 14 or 15^{\prime} degrees, it is evident, the line of his draught fhould form the fame angle with the horizon, becaufe he will then pull perpendicularly to the flope of his fhoulder, and all parts of that fhoulder will be equally preffed by the collar. Fig. 1, Plate XIII. may render this more intelligible, and fhow that a horfe draws more conformably to his mechanifm in a floping, than an horizontal line.

But the advantage he has in overcoming obftacles to his draught, by this inclined direction, is alfo mechanically great, as may be demonftrated by fig. 4, , Plate XIII. Call A a wheel, b an obftacle, c the axle of the wheel, d the fpoke which at prefent fuftains the weight. A line drawn from the neareft part of the horizontal line of draught $c k$, to the fulcrum or obfacle at c, will form the acting part of a lever * $g e$; and another line $e d$ being drawn from

* What is here meant by the acting part of a lever is its longer arm, the refifting part is the fhorter arm.
the fulcrum c to the neareft part of the fpoke d, will form the refifting part of the fame lever. Now as the acting and refifting parts of the lever are of equal lengths (i. e. are fines of equal arcs), the lever becomes a fcale-beam, and a draught in the line $g k$ muft be equal to the weight of the wheel, and all that it fuftains, befides the friction. For if $g e d$ be a crooked lever, a pull at g muft be equal to all the weight !upported by d. Now when a horfe draws agreeably to the flape of his fhoulder in the line $i b$, the acting part of the lever $b e$ is lengthened nearly one fourth; fo that if it would require a pull at g equal to four hundred weight, a power applied at b will draw the wheel over the obfacle b with three houndred weigbt. To thofe unacquainted with the principles of mechanics, this truth may be eafily proved by an ordinary fcale-beam. The horfe himfelf, confidered as a lever, has in this inclined draught a manifeft advantage over his obftacles, in comparifori of an horizontal draught, as may be feen by fig. 2 , Plate XIII. When the horfe is yoked to a poft, or has any great obftacle to overcome, he converts himfelf into a lever, making his hind feet the fulcrum, and the centre of gravity of his body to lean over it at as great a diftance as poffible, by thrufting out his hind feet; by this means acting both by his weight and mufcular ftrength, and lengthening the acting part of the lever $a b$, he overcomes the difficulty more by his weig'tt than by his mufcular ftrength : for the mufcles of the fore legs act upon the bones to fo great a mechanical difadvantage, that though he exerts them with all his might, they ferve, in great difficulties, for little more than props to the fore-part of his body. Hence we fee the great ufe of heavy horfes for draught. But the great mechanical ufe and advantage of the inclined line of draught may be more particularly feen, by calling the line $a b$ the acting part of a lever, and the neareft approach from the fulcrum
b to the inclined line of draught (that is, $b c$) the refifing part of the lever ; compare this with the refining part of a lever touching the horizontal line of draught (that is, $b d$), and it will be found nearly double; confequently, agrecable to the known properties of the lever, a weight at g would require double the exertion in horfes to remove it, that the fame weight would require was it placed at e. Thefe advantages, great as they are, are yet fo obvious, that one wonders how they could be overlooked. Let any one with the model of a horfe from a toy-fhop, fet his hind feet on the edge of a table, fig. 5, Plate XIII. and it will be found that he will draw double the weight along the table a, that he can upon the table b.

The obvious conclufion from the experiments is, that fingle-horfe carts are preferable to teams:- that four horfes, with each a properly conftructed cart, will draw more, and with more eafe to themfelves, than when they are yoked in a team to one cart; becaufe, in that cafe, three of the horfes muft draw horizontally, and confequently in a manner inconfiftent with their mechanifm, and the eternal laws of mechanics. Practice alfo proves the truth of this theory. The fmall horfes of the north of England draw more weight of actual goods than our largeft waggon horfes, and go longer ftages. The fmall horfes of Ireland draw, as a common load, 15 cwt. of goods, and travel farther per day than our waggons, and over worfe roads than ours are in gencral: whereas 10 or 12 cut. is as much as falls to the thare of one waggon horfe of real goods, his fuperior ftrength being wafted upon a cumberous and ill-contrived vehicle.

Waggon wheels are generally formed as fig. 3, Plate XIII. I
fuppofe the reafon why the wheels are made to run on an inclined axle, is to make the body of the carriage more roomy; and that each fpoke when its turn is to fuftain the weight, may fand perpendicular under it. But what are the facrifices that muft be made to thefe conveniences! In the firft place, the machine muft fand on a narrow bafe, and be thence very liable to be overturned; the inclined axle muft be enormoufly firong to refift the laternal preffure of ruts and ficle pavements; and, worft of all, the wheels, being of a different circumference on their two fides, the fmaller circumference muft be reduced to the ftate of a fledge every time it groes round, in the proportion as it is lefs than the other; that is to fay, if the circumference $c d$ in the foregoing fection be 10 inches lefs round than the circumference $a b$, then will 10 inches of that fide of the wheel be dragged on the road like a locked wheel every time it goes round! What an additional and unneceffary draught muft this be to the poor horfes! and what an injury to the roads! -A broad wheel is thus rendered a mill-ftone, and grinds to powder the hardeft flint gravel! In vain may our legiflators make laws to preferve the roads by broad wheels, fo long as this abfurd practice is fuffered. I venture to affirm, that more real mifchief is done to the roads by fuch broad wheels, than would be done by narrow ones! I have heard the late Sir George Saville fay (and he was the beft gentleman mechanic, both theoretical and practical, I ever knew), that he had calculated how far a waggon was rendered a fledge in a joumey to York from London. The diftance is 200 miles, 30 of which the waggon is drawn as a fledge without wheels! -What a tax is this upon horfes! what a tax upon the roads! Some waggoners have foumd the art of making the tire of their Wheels protubeiant, or bulging in the middle, by which they touch a hard road with little more furface than a narrow wheel ; thereby
doing the fame mifchief as narrow wheels, and cvading the tax upon them.

But of what a weight and ftrength muft fuch wheels be made, to fupport the cnormous loads laid upon them! Both of which in waggons muft add exceedingly to the draught of the horfes, becaufe a waggon, from the flownefs of its motion, obliges the horfes to overcome it vis inertice every moment they are drawing it. That is, it is the fame thing as putting it into a flate of mution from a ftate of reft every moment: for every one knows how fmall a force is capable of keeping a heavy body in motion, when it is once in motion, to what is neceffary to put it in motion from a flate of reft. But what that difference is, will be more particularly confidered hereafter. At prefent, I confine myfelf to the particular oppreffion of horfes, and the damage done the roads, by the prefent mode of carrying goods from one place to another. If the aforefaid doctrine be true, viz. that a horfe was defigned by nature to draw in a floping or inclined direction, then fix out of the eight horfes in every team muft draw inconveniently, and inconfiftently with their mechanifm, for they muft draw horizontally ; fo that much exertion is mifapplied : the horfe's collar is alfo drawn againft his throat, by which his breathing is interrupted: and in cart teams (where the horfes are not marfhelled, as in waggons), one horfe is ftanding fill, perhaps, while another is wafting his ftrength in pulling him forward. One horfe, to eafe himfelf, leans one way out of the line of draught, whilft another is leaning a contrary way: in fhort, their ftrength is feldom united. I do, therefore, believe, that fix horfes yoked to fix fingle carts, would draw more, with more eafe to themfelves, than when fix are yoked in one team. But as an act of parliament fays, that one man at leaft muft accompany every team, is it not
cheaper to pay for fix horfes, than to pay for fix men? Certainly. But I venture to declare the fix men unneceffary; for it is no uncommon thing to fee fix or eight northern fingle carts driven by one man: he ties the halter of one horfe to the cart which goes before it, and by this means has the whole as much at command as if they were yoked in the chains of a waggon. A horfe has alfo the momentum of his draught increafed by having a portion of the weight on his back. We may alfo fee that there is not fo great a difadvantage in the draught of low wheels as is generally imagined; for low wheels oblige the line of draught to incline, agreeably to the natural draught of the horle, which is more than an equivalent for the difadvantage a low wheel has, confidered as a lever. Wheels drawn horizontally, do not increafe in their mechanic power, in the proportion of their height. If a wheel be three feet fix inches in height, and drawn from any part of the carriage, fo that the line of draught continued might pafs three inches below the centre of the axle, it would have all the advantages of a wheel of four, five, or fix feet in diameter or height : for the lift in a floping draught gives the fame advantage to a fmall wheel, that a larger. wheel would have from its mechanic power, without the incumbrance of its weight.

There is a maximum, however, in the height or diameter of wheels, beyond, or fhort of which, we cannot go without an outrage on mechanic propriety. In uneven countries, if wheels are above fix feet in diameter, they muft be made fo ftrong, that their weight will more than counterbalance their mechanic advantage: if they are lefs than three feet, they are not fit for a foft country:-we are here fpeaking of two-wheeled carriages. In four-wheeled carriages we are obliged to have low fore-wheels for the convenience of
turning, not becaufe there is any pufhing quality in tall hindwheels, according to the ideas of John the Waggoner, or of my Lord Jehu, who both place themfelves and their luggage on the fore-wheels of their refpective carriages, no doubt for the wife purpofe of being pufhed forward by the hind ones! In my lord's phaeton the hind-wheels falk behind, fomething like a tall footman following his diminutive lady, having nothing to carry but her lap-dog! Poor John has fome excufe for laying the centre of gravity of his load upon the fore-wheels, becaufe he muft leave the tail of his waggon open, to receive goods by the way, as he goes along. But that, in a phaeton, it fhould ever enter into the mind of man, that two riders, placed in a dangerous and ridiculoufly-elevated feat, with the apparatus nieceffary to fupport fuch a birds'-neft, together with a heavy boot, fhould be all loaded on thofe wheels the leaft capable of getting over obftacles, and leaving the tall hindwheels nothing to fupport, is a paradox in human reafoning above my capacity to folve. Perhaps it may be matter of pride to ride on horfeback without touching the horfe; and, perhaps, well worth hazarding a neck to be fo far elevated above our fellow-creatures, But let pride and folly enjoy their diftinctions : it is the office of fcience to cultivate the ufeful.

SECTION IX.

Containing Experiments on Coaches, Cbariots, Curricles, © c. ©c.

TO prove that a horfe fhould have fomething to lift in his draught, to give that draught its utmoft momentum, the following experiments were inftituted:

With a well-executed model of a four-wheeled carriage, whofe weight was 82 ounces; the fore-wheels $8 \frac{1}{4}$ inches, as fig. 6 , and the hind-wheels 10 inches; drawn on an horizontal board by a line over a pulley : an obftacle $1 \frac{1}{2}$ inch high was placed before the forcwheels, and the Jplinter-bar raifed on the futcbels, fo as to be even with the top of the fore-wheel, as at a, fig. 6 , Plate XIII. The line of draught was then horizontal, as $a b$.

Ounces.
Things being fo difpofed, the weight neceffary to draw the fore-wheels over the obftacle was

2d. Every thing the fame as in the laft experiment, ? only the fplinter-bar lowered to b, fo as to make the line of draught to be from three fourths the height or diameter of the wheel. Weight required was

3d. All as before, only the fplinter-bar fo lowered, to $\}$ c, as to make the line of draught from the axle . $\}$

4th. Every thing as before, only the point of draught made from a fplinter-bar one inch below the axle of the fore-wheel, as d. Weight

Hence may be feen that the difadvantages of drawing from above the centre are as the fines of the refpective arcs paffing through the fplinter-bar ; and the advantages of drawing from below the centre, alfo as the fines of the refpective arcs. Now as the fplinter-bar,
or point of draught, in moft of our carriages (nay, I believe, I may fay all), is placed about one fourth the diameter of the fore-wheel above its centre, it is evident that a fortuitous preffure, equal to one fifth of whatever weight lies upon it, is actually added to the natural weight, by this unnatural fituation of the point of draught! For, by the above fcheme, it may be feen that twentyfour ounces of draught furmounted the obftacle, when the pull was from the centre ; and that it required thirty ounces to furmount it, at half the length of a fpoke above the centre.

Another courfe of experiments was made at my houfe, before feveral gentlemen well verfed in mechanics, on a waggon-like model, weighing about 156 lb . ; the fore-wheels four feet two inches in diameter, and the hind-wheels five feet fix inches; with an obftruction placed againft the two fore-wheels of $6 \frac{1}{4}$ inches.

Pounds.
1ft. The line of draught was perfectly horizontal, or even with the top of the fore-wheels; in this cafe, to draw it over the obftruction required

2d. When the direction of the line of draught made ant angle with the horizon of feven degrees, by lowering the point of draught fix inches below the top of the wheel, it required

3d. When the end of the line of draught was lowered, till the direction of it was at an angle of 11° with $\}$ the horizon, it furmounted the obfruction with $\}$

4th. When the end was lowered to the centre of the? wheel, and the line of draught was at an angle of 15° with the horizon, the obfacle was furmounted with
$55^{\text {th. When }}$ the end of the line of draught was lowered to $6 \frac{1}{4}$ inches below the centre or axle, fo that the angle with the horizon was 17°, it was drawn over with

6 th. When it was lowered to one foot and half an inch below the centre of the wheel, fo that the angle was $\}$ 18°, it was drawn over with
$7^{\text {th. When }}$ it was lowered to $18 \frac{3}{4}$ inches below the centre (being only $6 \frac{1}{4}$ inches above the road, and exactly level with the height of the obftruction), the angle 23°, the weight neceffary to draw it over the obftruction was

Thefe experiments, though made upon fo much larger a fcale than the former, produce a fimilar refult; fo that there is no reafon for the too general, and often falfe, opinion, that what may fucceed in model, or miniature, will not fucceed at large.

An experiment with a common chaife, when drawn by a fplinterbar as high as the top of the fore-wheels, proved that it requred 80 lb . to put it in motion. When drawn from the axle, it required only 51 lb .

With another chaife, and the fplinter-bar three fourths of the height of the fore-wheel, the draught over an inch obfiruction required 100 lb . But when drawn from the axle, only 61 lb .

With another chaife, and the fplinter-bar three fourths of the height of the fore-wheel, the draught over an inch obftacle required 119 lb . But when drawn from the axle, only 93 lb . So that in both cafes there was one fourth in favour of the draught from the axle.

With the fame chaife, drawn up a hill, rifing one foot in fix, with the fplinter-bar one fourth of the wheel's diameter from the top, it required 168 lb . to draw it up. But when drawn up the fame hill from the axle, it only required 129 lb ; there was therefore the fame advantage nearly in this mode of draught up-hill as on level ground.

The fame experiments with larger wheels made the advantage ftill greater.

Another experiment with a light coach, on level planks, was to drav it by an horizontal line from the fplinter-bar ; the carriage required 143 lb . to put it into motion: when drawn horizontally from the axle, it required only 85 lb . to put it into motion.
N.B. When ropes are faftened to the tops of the fore-wheels, the weights hung to them were but half of the above 85 lb . ; for, by this mode of draught, the perpendicular diameter of the whed becomes a lever of the fecond kind, the ground the fulcrum, the diameter the acting part of the lever, and the femi-diameter the refifting part of the lever.

SECTION X.

Contains Experiments to afcertain the beft Proportion between the Heights of the fore and bind Wheels, ©c.

THE experiments were made with the model of a waggon, whofe weight, with the wheels, and a load (placed in the centre of the waggon), was eighty-two ounces. The wheels, in all the experiments, being to the ufual wheels on a fcale of two inches to a foot. The height of the horfe's fhoulder being on the fame fcale, four feet two inches the medium height-the draught from the fore-axle-the obftacle half an inch high-and the angle of draught ten degrees above the horizon.

In this fyftem of experiments, the changes were rung among wheels of every common dimenfion; and it is rather furprifing to find fo little fuperiority or inferiority in all the variety of combinations of heights in fore and hind wheels. Fore-wheels, however, of four feet eight inches, and hind-wheels of five feet fix inches, feem to have what little advantage there is.

In putting thefe ideas into actual practice, it may be objected, that many inconveniences would arife to the coachmaker in altering the routine of his bufinefs, and putting his hands out of the train in which they had been ufed to work: if this were a general cafe, a bar muft be put in the way of all improvement. But here no great departure is required from the general practice. It is them. And I fee no great outrage that would be done to appearance and fafhion, if the buttons on which the traces are looped were under the fplinter-bar, inftead of being a-top. In thefe cafes the draught would have all its mechanical advantages, and the horfes would draw agreeably to their form and anatomy: the pole would have the fame command of the carriage down-hill, and the fame command in turning, as in the prefent method.

SECTION XI.

Experiments to eftimate what the Draught of Carriages is on different Kinds of Roads, and on different Declivities.

BEFORE we enter upon this eftimate, it will be neceffary to ftate a theorem refpecting all declivities whatfoever. A hill being but a continued obftacle, and its refiffance overcome by gradation inftead of abruption, or all at once, that refiftance may be reprefented by a right-angled triangle, fig. 7 , Plate XIII. B. whofe bafe $a b$ is the level of the horizon, the hypothenufe $a c$ the declivity: now the fum of the draught required from a to c, would be equal to furmounting the obftacle $b c$ all at once; and hence we find that the refiftance which hills make to the draught, is as the length of the hill to its perpendicular height, agreeably to the doctrine of the wedge or inclined plane.

The hill $a b$ rifes one foot in three; for $a b$ is three times $b c$. Now, agreeably to the doctrine, That the difficulty of draught is as the length of the hill to its height, it follows, that the wheel D E, fig. 8, Plate XIII. would be put in motion on the inclined plane $a b$ with one third of the power that would lift it, and its load, perpendicularly, up any part of the line $c b$. In this cafe, the mechanic truth is verified, That what we gain in power we lofe in time; or that we only fubftitute a quantity of motion in the place of a quantity of power ; for if I can roll the wheel $D E$ up the inclined plane with one third of the exertion that would be neceffary to lift it the fame height perpendicularly, I muft move it three times as far. The fame rule holds good confidering the fpokes of the wheel as the acting parts of levers. The angle e is equal to the angle n, agreeably to the known truths of geometry; and the centre of gravity of the wheel s will have its line of direction in $s 0 z$; for that is the direction in which it would fall. Now a line drawn perpendicularly from $s o$ to r, will be the fine of the $\operatorname{arc} o r$, and be the refifting part of the lever to the fpoke or radius $s r$; for where the wheel touches the inclined plane, that place may be confidered as the fulcrum of the lever sro. Here the fame rule holds good as in the inclined plane; the acting part of the lever $s r$ is three times the length of the refifting part or, and ferves further to confirm the doctrine, That the refiftance of hills is as their length to their perpendicular height.

SECTION XII.

Mifcellaneous Obfervations on the Excellences and Defects of Wheel

 Carriages in general.DISHED wheels, when on ftraight or horizontal axles, have many excellences: they make carriages to ftand on a broader bafe, and are lefs liable to overturn ; they give more room to the body of the carriage, than if the fpokes were perpendicular ; they ftand againft fide-jolts like an arch, and when the carriage goes on the fide of the road, inclining on one fide more than the other: or when the centre of gravity of the load lies over on one fide, difhed wheels may be faid to exert a degree of ftrength proportionate to the weight thrown upon them; for then the fpokes on that fide become perpendicular, and, of courfe, more capable of fuftaining the additional load: but when the carriage is on level ground, and the centre of gravity equally diftant from the fore and hind axle, each wheel fuftains a fourth of the weight; and hence, though at that time the fpokes ftand inclined, they are very capable of fuftaining the weight. But if the fpokes were perpendicular to the nave, they would be better fill; only the fookes that fuftain the fellies fhould fand alternately on each fide the perpendicular, as fig. 9, Plate XIII. Such a wheel is an arch both ways; and as wheels that are difhed are as liable to lateral obftructions on their weak as on their ftrong fides, therefore a wheel armed on both fides, as the fig. 9, is certainly ftronger, has lefs wood, and is lighter in proportion to its ftrength. The mail-coaches have, in part, adopted this
idea; and in country roads it is certainly very ufeful; but in London, where coaches crowd like the people, the naves would be perpetually clafhing.

The bent fellies (when wood is not hurt by heating) are an improvement; they are ftronger, with lefs wood; lighter, and, of courfe, eafier of draught.

As to friction-rollers, polifhed and turned boxes and axles, they are all expenfive nonfenfe. Friction-rollers foon wear into fections, and then they are worfe than the clumfieft box. And though artifts would perfuade us that boxes may be made fo clofe and tight, that the axles fhould fill them with fuch nicety, that no fand, or even water, can get in, experience fhews it impoffible. They will pleafe for a fhort time; but they will foon become like any common axle : thefe, and leathern boxes, are pleafant, becaufe they leffen the ufual noife of a carriage; but they are only temporary. The axles fhould be polifhed, and fit the boxes pretty clofe; but not fo clofe that the attraction of cohefion fhould impede their motion : indeed, the friction of axles, in carriages, is, in general, fo trifling, that any perfon converfant with mechanics ftands amazed that fo much attention has been paid to it. If an iron axle be made to fit jits boxes pretty accurately, and, by the ordinary methods, fand and impurities be prevented from getting into them, and kept well lubricated by greafe, there needs little more attention to the axles of wheels.

It has been fuppofed that carriages hung very high, were drawn eafier than thofe that hang low. If ever this idea had any influence in an informed mind, it muft have been from the greater radius of
a circle, in which an high carriage acts than a low one. See fig. 11, Plate XIII.

If the centre of gravity of the carriage was naturally at a, as it ran along the plain B, if it met with the obftacle d, it would be lifted almoft perpendicularly to b; but if the centre of gravity was as high as c, it would not be lifted, but thrown back, as it were, to d. The check given to the horfes, when an high-placed carriage is thrown back, is rather worfe than if the centre of gravity was lower: and it is obfervable that nothing checks the noble ardour of a horfe fo much as fudden jerks in his draught. The variety of over-turns, and the numberlefs necks and limbs that have been broken by means of placing the centre of gravity of the load fo high above its bafe, have at laft convinced the public, in general, of the inutility of the fafhion ; and, accordingly, the bodies of carriages are placed now much lower than they were fome years ago. And if they were lower ftill, and the axles made longer, they would be fill lefs liable to be overturned ; the carriages might be more roomy ; and by having more fpace to lay fide-wife, would remove the jolts caufed by the collarbraces in the prefent fafhion. It may be faid, in favour of highplaced carriages, that they keep the riders out of the duft, and give them a profpect of the country. For thofe who ride out only for pleafure, or an airing, I grant thefe are confiderations; but it is not for them I write ; I wifh to be inftrumental in eafing the weary traveller, and the more weary horfes that draw him.

Short carriages, alfo, ftill are confidered as of eafy draught: fore and hind wheels were lately brought fo clofe, that there was fcarcely room to get into the carriage. This is alfo in the lift of errors. For if the weight be the fame, the frictions and refiftances will be
the fame, whether the carriage be ten yards or five in length. It is true, a few inches taken from a perch may make it a few pounds lighter, and alfo a few pounds ftronger ; but this is not the motive, it is to make it follow better, according to the language of the ftable.

Carriages leaning forward have alfo been thought to affift the horfes. This pofition is painful to the riders, and gives no eafe to the horfes.

Sharp made the maximum of a carriage-wheel two feet diameter; Moor, eight: perhaps they were both wrong. The finall wheels muft require an intolerable draught in foft or fandy roads : and the large wheels would tire the horfes up-hill, and break their backs downhill; for, if they are very high, they muft be proportionally ftrong and heavy, fo that though their fpokes may be confidered as the acting part of levers, their weight overcomes all their mechanical advan-tage.-Mankind, by degrees, come to what is right ; five and half or Gix feet is certainly the maximum of a wheel, and our cart and waggon wheels have long refted at that fize. A wheel fix feet high muft be nearly double the weight of one three feet fix inches high, to be equally ftrong: - hence a query arifes, where the maximum meets of ftrength and power, and of power and ftrength? For if the wheel s, fig. 8 , Plate X III. and the weight upon it, be of the fame weight as another wheel, D, and the weight upon it; and that equal in weight to the wheel E, and the weight upon it; now though D is double the diameter of s, and E three times its diameter, they will on the fame declivity be drawn up fingly with the fame weight: allowing a fmall matter for friction, which is greater in a fmall than in a large wheel. But when the boxes of wheels
are well made, and well greafed, the friction is not above one pound for every cwt. of the carriage and load, and therefore a trifling object in any fized wheel. But though the wheel s and its load weighed one ton; and the wheel E (three times the diameter of s) and its load weighed one ton, and could be dragged up the inclined plane $a b$ with the fame weight; yet the quantity of timber required in the tall wheel, to make it equally ftrong with the fmall wheel, would make its weight a greater difadvantage than any advantage derived from its height; for the low wheels of 8 cwt . would fuftain and carry a load of 12 cwt . with nearly the fame fafety, or danger of breaking down, as the wheel E (three times its diameter) of 12 civt. would fuftain and carry away a load of 8 cwt.

A fafhion has lately farted up, where fage carriages run on eight wheels. We do not find that millepedes run fo faft as two and four legged animals, nor do I think this eight-legged machine has any advantage over thofe of four. The friction is unneceffarily increafed, both of the firft and fecond kind. For a low wheel that turns twice round, while a larger one turns but once, muft have double the rubbing friction; and if it be but half as high as another, it will have double the friction by contact on fandy, foft, or ftony roads. Thefe impediments, multiplied by 8 , become forinidable. This is another added to the many oppreffions under which horfes labour. The roominefs of the carriage admits a number of paffengers, in proportion to the number of horfes that draw them: and it makes no jolt at a hollow place in the road; becaufe, when the firft wheel goes over it, it does not defcend into it, but goes ftraight over without touching; when the fecond wheel comes to the hollow, the carriage is fupported by the 1 ft , 3 d , and 4 th wheels, fo
the fecond paffes over without touching ; and thus of the reft: by this means the carriage keeps more on a level, and freer from jolts than any other carriage. This fort of carriage has begun already to be placed on four large wheels, for in its original conftruction it might, from its novelty, be the whim of a few months, but on that conftruction it cannot laft long.

Single-horfe carriages are as little free from mechanical crrors as thofe of an higher clafs.- The fprings and other accoutrements feem more calculated to enhance the price of the vehicle, than to make it laft, or be eafy to either the horfe or riders. It would be vain to go into a detail of all the fafhionable vagaries which have diftinguifhed this machine, growing as it has from a noddy to the prefent curricle. As the riders in this like to get up in the world as well as their neighbours, a ftage, as it were, muft be erected on fhafts or on the axle, to fet the body as high above the axle as poffible ; by which the riders ceafe to jump up and down as formerly, the trotting of the horfe giving them a motion backwards and forwards horizontally, fo uneafy, that many wonder why their backs fhould ache fo feverely in riding a few miles in this carriage ; if they will confider the human back bone as a feries of hinges, playing with this abfurd and unneceffary motion, the wonder will ceafe.

Some again believe if this kind of carriage leans forward, it will pulh on the wheels. To fuch as reafon thus unmechanically, it is in vain to offer reafon.

SECTION XIII.

IT may be expected, after the various faults I have taken the liberty to find with the prefent mechanifm of wheel carriages, I fhould offer fome medicines for their defects and difeafes. I muft here, however, do juftice to the workmanfhip and decorations of our wheel carriages; being confeffedly, in thefe refpects, fuperior to all nations. For carriages of fate, our country is applied to from every civilifed nation on earth. The difpofition of our fprings, both ferpentine and fpiral, for fhow and elegance ; our carving, gilding, and varnifhing; in fhort, in every thing where the eye is to be captivated, and where fhow and fate are the objects, we are unrivalled: but, unfortunately, thefe things feem to have abforbed or fwallowed up every thing elfe belonging to a carriage. We feem to have loft fight of its original defign; or, rather, the eye is perverted from the main object, and the lace and ruffles become the only parts to which we attend. In what I am going to fay, however, refpecting ,what I apprehend to be an improvement in coaches, I muft beg leave to be underftood that ornament and decoration are out of the queftion. 'Tis the eafe of the riders and horfes I aim at; the ftrength and lightnefs of the carriage; its cheapnefs and durability.

In the firft place, I explode the perch ; I pronounce this heavy and unwieldy piece of timber an ufelefs load to the horfes. Why fhould not the bottom of the body anfwer all its purpofes?-and the fore-fprings the purpofes of a crane-neck ?

Suppofe the bottom part of the body, i. e. the timbers and fpring of it , formed fomething in the manner of fig. 1, Plate XIV . : a a fore-fprings united by the bar b, to which the fore-axle is attached by the bolt $c ; d d$ leathern ftays, to prevent fide-jolts from affecting the body of the carriage.

There are ftays for the fore part, but faftened under the feat of the coachman, fo as not to be expreffed in the above drawing.

The fhape of the bottom, and fprings of the coach, may be underfood from fig. e, Plate XIV.

It may be afked, what advantages thefe carriages have over thofe of the prefent falhion?

In the firft place, I eftimate they may be built, with every ufual convenience and decoration, fur two thirds the price of coaches of the fame fyyle.

2d. They will be confiderably eafier of draught.
3d. They will be eafier to the riders.
4th. They will be lefs liable to overturn.
$5^{\text {th }}$. They will laft longer than coaches made in the ufual way, becaufe the whole is fupported upon fprings ; whereas the carriagepart of all coaches, at prefent, not being ealed by the fprings, ftrike, in a manner, fo dead and unyielding againft obftacles, that
the carriage is knocked in pieces long before the body of the carriage, becaufe the body is fuftained by fprings.

6th. It will be as eafy to the coachman as to the infide paffengers ; which will alfo give much facility to the fore-wheels in furmounting obftacles. Whereas, in the prefent mode, an heavy coachman and a loaden boot are perched over a fmall fore-wheel, and that preffed down to the ground by the futchels acting upon it as a lever (as before defcribed). I hefitate not to pronounce that forewheels fo loaden would require double the draught that thefe would, with the fame weight.

7 th. Thefe carriages will turn in lefs compafs, than carriages with perches.

8th. I eftimate their weight at two thirds of thofe of the prefent fafhion. Of courfe their vis inertic, fo diminifhed, muft be friendly both to their draught and duration.

9th. A finall window on each fide of the coachman, will give the riders an opportunity of looking out forwards; and a lantern hung in the front of the coachman's footfool, will enlighten that part of the road where the horfes are to tread. Whereas three lamps hung in the prefent way are of little fervice to either the coachman or his cattle.
10. The pole is a moft unnatural mode of turning the carriage, and of retarding its motion down-hill: a pair of fiafts for each of the two hindmoft horfes, attached to the fplinter-bar by hinges as in a common chaife, would anfwer every purpofe; they would
turn the carriage in lefs compafs than by the pole: both horfes could act together in retarding the carriage down-hill; for by leathern ftays from one fhaft to the other behind each horfe, all the purpofes of breachings would be anfwered better, and with a tenth of their expence. The end of the pole bobbing and jumping againft the heads and nofes of the poor horfes, teazes and peplexes them exceedingly, and their draught is increafed by fuch a heavy lever projecting fo far from the fore-wheels. Whereas a pair of light fhafts would neither teaze the horfes, nor hurt them by their weight.

```
END OF THE THIRD LECTURE.
```


(14 r)

LECTURE IV.

ON CHEMIS'TRY.

IFEEL a diffidence in the following explanations, confcious how much I am obliged to deviate from the received, or rather the new, documents of chemiftry. For being able to find little difference between the phlogifton of the old chemifts, and the caloric of the new, I have made the word fire to anfwer both.

Pblogifton was confidered as fire united to fome unknown fubftance. Lavoifiere fays, caloric is that exquifitely elaftic fluid which produces beat. Am I excufed in calling thefe plain fire? Fire, as it is generally produced on the earth, is known to be impure, and united with much terreftrial matter ; and, therefore, may have given rife to the idea of an unknown fubftance being united to the fimple element. This element of fire having its chemical affinities in common with groffer bodies, enters more abundantly into fome than into others; hence fome bodies are more combuftible than others, from containing more quiefcent or latent fire; and therefore when that fire is extricated from fuch bodies, it brings much of their grofs matter along with it. But when fire is united with the
volatile and finer parts of terreftrial matter, it transforms it into that thin fluid we call our atmofphere. Fire therefore affumes various appearances, and produces various effects; but ftill I conceive the element to be identical, fimple, unchangeable, deriving its various character from the fubfances with which it is combined. In fhort, in its elementary flate I conceive it to be electricity, and I hope to prove that electricity is derived from the fun.

To affift thofe who would make a more complete fcrutiny into this moft ufeful branch of natural philofophy, than can be in an elementary treatife, I fhall firft endeavour, by obfervations and experiments, to explain fome of the general terms of chemiftry.

SECTION I.

ACIDS are both in a liquid and concrete form, have a four tafte, and effervefce with alkalis. Perhaps the acid principle, oxygen, is identical, and only differs by being combined with different fubftances : when procured from fulphur, it is called fulphuric acid; when diftilled from nitre, the product is nitrous, or (when very ftrong) nitric acid; when from fea falt, it is marine acid; when from galls, the gallic acid; from forrel, the oxalic acid, \&cc.

Vitriolic or fulppuric acid is fluid, tranfparent, colourlefs, greafy to the touch, and without finell, like water, but twice as heavy. It is generally obtained from fulphur by diftillation or burning: for the laft. vital air muft be prefent to maintain the combuftion; the
veffel muft be clofe; and water muft be prefent to imbibe the acid. There muft be one part of nitre (to afford vital air) to eight parts of fulphur, in a proper veffel, enclofed within a chamber of confiderable fize, and lined, on all fides, with fheet-lead (becaufe vitriolic acid will not attack lead); there muft alfo be a thin ftratum of water covering the bottom of the chamber to attract the acid, as it rifes in fumes from the burning brimftone. This combuftion repeated, the water becomes oil of vitriol, as it is called, from pouring like oil, and feeling like foap between the fingers. This liquor diftilled, concentrates the acid; and is the vitriolic acid of commerce.

Nitrous acid is detached from faltpetre by the vitriolic acid feizing the alkaline bafes of the nitre. The nitre is moiftened with vitriolic acid in a glafs retort, with a long neck, to which, if heat be applied, the acid will rife in brown vapours, and condenfe into a brown liquor in a receiver. This is the fmoking nitrous acid, which if weakened by a little water, becomes aqua fortis.

Marine acid is detached from table falt by one third its weight of vitriolic acid, as in the procefs for making nitrous acid (or by Woulfe's apparatus). The gas comes over without heat, and fhould be received in water, which will greedily abforb the gas, and become marine acid, of a lemon colour, and of a fimell like faffron. This falt (like nitre) contains both an acid and an alkali; but its alkali has a greater affinity to the vitriolic acid than its own ; the marine acid is, therefore, diflodged from its native alkali, and unites with the water. The marine or muriatic acid forms with foda the common table falt, of a cubical form, and is three ways procured, viz. it is dug out of or drained from mines, and is called
rock Salt; it is procured from fea water evaporated by the fun, and called bay falt ; and laftly, from fea water by boiling, and called rebite falt. This acid will combine with the volatile alkali or ammoniac, and then has the property of making tin very readily unite with iron and copper, under the name of timing utenfils of thofe metals. This acid combined with the nitric acid forms an acid different from both, called aqua regia, that will diffolve gold, platina, \&c.

Oxalic acid, or acid of fugar, is procured by the action of nitrous acid on fugar ; it feizes the alkalefcent particles of calcareous earths, and is the beft teff for difcovering lime, chalk, marble, \&c. in water.

Gallic acid is in the gall nut; an aftringent principle, that has a firong attraction to metallic oxyds, and precipitates iron from its folution, of a fine dark blue or black powder, which fufpended in water by means of gum, makes the common writing ink.-Decoction of galls, or oak bark, contains the matter called tanning, or the tanning principle.

ALKALIS are faline fubftances, that combine readily with acids: in a concrete form they attract moifture from the atmofphere, and become fluid: they have an acrid burning tafte; fufe with a moderate heat; diffolve earths with a firong heat; become glafs, when mixed with flinty fubfances, and expofed to a confiderable heat. They change vegetable infufions to green ; and they render oils mifcible with water.

Fixt mineral alkali forms one-half of fea or table falt. It is detached from the falt by double its weight of litharge for calcined
lead), which, after they are triturated with water, and have ftood for fome hours, a decompofition will enfue; the acid will attach itfelf to the metallic calx, and the alkali remain in the water; which, on evaporation, will leave a greenifh-yellow pigment.

Vegetable fixt alkali are falts found in the afhes of all vegetables, and much the fame as mineral alkali. Pot-afh is from the afles of wool; kelp, from fern afhes; and foda, from kali, a marine plant.

Thefe afhes, mixt with pure water, have their falts diffolved by it, which, after filtering and evaporation, leaves the falts behind. This alkali boiled with quicklime, lofes its fixt air (and the lime acquires it); it is then faid to be cauftic, becaufe in ftriving to acquire fixt air, it corrodes and tears all animal fubftances with which it comes in contact. This alkali forms foap with oil, or oily matters; and with filicious earth, flint-glafs. Is particularly ufeful in wafhing, bleaching, and medicine.

Tartar is the effential falt of wine, which, when burnt, is alfo an alkaline falt, that has fo ftrong an affinity to water, that it will attract it from the air, and become a complete folution : it has then been called oil of tartar by deliquium. If tarter be boiled to folution in water, and fuffered to cool gradually, it will cryftallize beautifully, and is called the cream or cryftals of tartar.

Volatile alkali. This alkaline falt is procured by decompofition from all animal, and fome vegetable fubftances; and by putrefaction. (See Affinity.)

SOLUTION is a property of fluids, whereby they imbibe, or incorporate, themfelves with folids; feparating their parts, and becoming homogeneous, or as if the particles of the folid were the fame as the particles of the fluid. The fea is a folution of falt in frefh water. Ink is a folution of vitriol and galls in water. Diluted nitrous acid diffolves copper, making a folution of copper. Quickfilver diffolves lead. Gold diffolved in aqua regia is a folution of gold; and fpirit of wine incorporates with camphor. When there is a greater attraction between the fluid and folid, than between the particles of the folid itfelf, the particles of the folid are feparated, and detached through the fluid, and both become fluid.

The particles of water are conceived to be round, from the fluid imbibing a quantity of foreign matter without its bulk being increafed; for if falt, and then fugar, be fcattered flowly into water, fo as to have time to diffolve, the water will almoft imbibe its own bulk of the falts before it will appear to fwell. The manner of this incorporation may be explained by making the particles of water to be reprefented by a glafs full of marbles, and pouring in fmall fhot amongft them to perfonate the falt, or any thing elfe incorporated with water. This may give alfo an idea of all mineral or other waters which derive their character from imbibing, mechanically, or chemically, the fine particles of the different ftrata over or through which they pafs in the bowels of the earth: for the fimple element is the fame in all places, and only has a character from attracting and incorporating itfelf with the fine particles of the fubfances with which it has affinity, or with which it comes in contact and mixes mechanically. Hence chalybeate fprings are of water that has run over iron, or iron-ftone; and though it may be
quite tranfparent, it will turn blackifl with a few drops of an infufion of galls in fpirits of wine. The acid of this aftringent vegetable unites with iron, its ore, its calx, or falt; and the folution abforbing the light that falls on it, produces blacknefs, being the fame as ink.

Tbames water infinuates itfelf through its gravelly banks a confiderable diffance from its bed; fo pumps, at fome miles diftance, draw up Thames water. In many parts of its progrefs it runis over chalk and felenitic beds (gypfum), which give it both an acid and alkaline quality in a fimall degree. The acid is difcoverable by a few drops of a folution of tartar (oil of tartar) : this alkali feizes the acid, and defcends with it in a cloud to the bottom of the glafs, where ftanding fome time, it concretes into a neutral falt. The alkaline part is difcoverable, in a long glafs, by a few drops of a folution of the acid of fugar, when the precipitation is exhibited in long, wavy, and ftriated ftrings of fingular beauty. This acid has fo ftrong an affinity to calcareous earths, that the finalleft poffible quantity of it in water is detected by it. This acid alfo attacks the teeth (as calcareous matter), and hence their blacknefs in thofe who indulge with fugar.

Many other tefts difcover acid and alkali in water, as fyrup of violets, tincture of turnfole, \&c. With the firft water a polarity is formed, that qualifies the mixture to tranfinit red light; with the latter, green light.

Bath zoater is warm, and chalybeate: thefe properties are derived from the beds of pyrites (or fire ftones) through which rain water paffes in the bowels of the furrounding hills. This ftone
contains iron and fulphur: from the iron it derives its chalybeate quality; from both its heat. If a heap of thefe ftones have water thrown on them, they will fet fire to any combuftible body in contact with them; for fulphur containing much fire, and vitriolic acid in combination with it, thefe qualities lie dormant till fome medium forms a chemical union between them and the iron; this is water, which gives the iron a vehicle through which to draw the latent acid from the fulphur, between which there is a ftrong affinity. The ftone, by this means, becomes flowly decompofed, the fire of the fulphur is evolved, gives out fenfible heat, and the water carries that heat to the furface. A continual flame is produced by pyrites in a place near the road between Florence and Bologna ; and from the fteamy appearance of the fmoke of Vefuvius, in the time of an eruption, it is more than probable that pyrites and water are the principal ingredients in that wonderful and alarming phenomenon!

Spa, Pyrmont, and Seltwer water, owe their medicinal, acidulous, and fparkling qualities, to fixt air. They alfo contain a little iron, magnefia, and common falt : thefe are detected by gentle evaporation. Thefe waters can all be imitated by art ; for chalk, marble, and all calcareous earths, hold fixt air in combination, and which can be forced out of them by ftronger acids. If a little bruifed chalk, in a bottle with a crane neck, have vitriolic acid diluted with water put to it, the air will be extricated, and may be let into the inverted jar of water, fig. 1, Plate XV. This jar being thook while it receives the gas, the water in it will imbibe the air, and become acidulated like that of Pyrmont. This gas is alfo forced into common water, fo as to become much Aronger than the natural Spa waters. See fig. 3; Plate XV.

Aix-la-Cbapelle, or Harrowgate zoater. Sulphur, or rather hepar fulphuris, is the major ingredient in thefe waters; but as water will not diffolve fulphur, how come we by its folution? Hepar fulphuris, or liver of fulphur, is compofed of equal weights of fulphur and pot-afh fufed together in a crucible. The alkali loofens the latent fire of the fulphur, by its ftrong affinity to its latent acid ; and hence when the hepar is expofed in air, or water, a portion of that fire is carried off, and the fulphur precipitates, as feen in the encruftations on the waters of Aix. Three parts of iron filings, and two of fulphur, melted in the fame way, anfwer equally well: the mafs being bruifed and diftilled as in fig. 1, Plate XV. will yield a gas which the water will imbibe, and become hepatic water, finelling like rotten eggs, alid curing fcorbutic diforders. A few drops of nitrous acid decompofes this water, it feizes the alkali, and the fulphur falls to the bottom. It is hard to fay how fuch a procefs as this is carried on in the bowels of the earth. Beds of pyrites are decompofed by water with heat:-Would not this heat and fulphur, in a bed of peatmofs (vegetable matter), produce a hepar capable of uniting with water? Water alfo diffolves air ; but the union feems not chemical; for take off the preffure of the atmofphere from the furface of water, and the air inftantly fprings up from the water; fo it appears as if it had only been forced mechanically into the water by the weight of the atmofphere.

DISTILLATION is the application of heat to feparate fluid and volatile parts from bodies ; and to condenfe and collect them in other veffels by means of cold. Heat expanding all bodies, and putting their particles into a repulfive fate, when this application becomes more powerful than the cohefion of the body, a feparation takes place; the lighter parts rife in iteam or gas, and the heavier
remain. Liquors that have gone through a ftate of vinous fermentation, as wine, beer, \&cc. are difpofed to part with fpirit by a gentle heat, and are put in the Still, a, fig. 2, Plate XV. The fire b, rarefies the wine into fteam, which may be reprefented by the little fars and circles within the Still a; the ftars as particles of repulfive fire, and the circles as the particles of the wine. Thefe are pufhed into the fill-head d, and thence into the pipe g, and along the fpiral pipe within c, till they make their exit at z. Hence the worm-tub, c, being kept always full of cold water, this condenfes the fteam within the worm, fo that it comes out a regular fluid at z. Diftillation may, therefore, be called a warfare between the repulfive power of heat, and the condenfing power of cold ; for the liquor rifes in a very attenuated fate in a; becomes more and more compact in the worm, till it ceafes to be fteam at z. Spirit rifing with lefs heat than water, comes over firf, as may be feen by holding paper dipt in it to a candle; but when the watry part of wine comes over, a paper fo dipt will extinguifh the candle : the tartar remains at the bottom of the fill: fo we find red-port confifts of fpirit, water, and a falt.

Sea water expofed in a retort, on a fire, comes over frefh, and the falt remains in the retort, and would melt before it would rife. This is, in miniature, the mode of manufacturing table falt. Hence grapes, after fermentation, produce brandy, and fpirit of wine; fugar-canes, rum ; and barley, gin.

SUBLIMATION is but a diftillation of dry fubftances. Sulpbur in a clofe veffel, with a long chimney, melts with a gentle heat, and rifing, adheres to the chimney, forming flowers of fulphur. Pbofphorus juft covered with water in a Florence flafk, and expofed over
a lamp, fublimes into the appearance of fars, and the aurora borealis. It rifes with the fteam of the water, and fruggling to quit the water, and obtain the air, burfts into beautiful corrufcations in the flafk, particularly when feparated from the lamp, and expofed in the dark.

Gum benzoin, melted in the pot a, fig. 3, Plate XV. on the hot iron e, will fublime on the fprig of rofemary in cryftals like needles, furrounding every branch like a beautiful hoar-froft.

Zinc, when melted in a crucible, by a hot fire, fublimes in flocculæ, like pieces of cotton wool.

Saturation fignifies the point at which the attractive and diffolving power of any menftruum ftops, when filled with the matter it is to diffolve. Solutions of falt or fugar in water, of fulphur in oil of turpentine, camphor in fpirits of wine, filver in aqua fortis, water in air, \&c. are tranfparent till fully faturated; if more be added, they fink in their natural form to the bottom undiffolved, and the menftruum is faid to be fully faturated. If water, fpirits, oil, \&c. be evaporated from the matters with which they are faturated, thefe matters affume their natural form : common falt, a cubical form ; nitre, the form of a prifm, \&c. \&c. adhering to the bottoms and fides of the containing veffels.

Cryftallization fignifies the various angular forms into which falts, fluors, metals, \&cc. go, when they depart from a diffolved or fluid ftate, into that of a concrete or folid form : in which ftate, a part of the water in which they were diffolved is neceffary to their cryflallization. This is called the water of cryftallization, which being
expelled by heat, or expofure to the air, the falts lofe their cryftalline form, and efflorefce into a mere powder.

Precipitation is performed in fluid matters only ; it is a difuniting of two or more ingredients by the addition of another, which, by its greater affinity, unites with one of the ingredients, and feparates the other from it, by which they generally fall to the bottom of the liquor, and are faid to be precipitated. Common falt thrown into water diffolves and becomes incorporated through the whole mafs of water, as may be tafted. The falt cannot then be feparated from the water by filtration, or any other method merely mechanical : but it may be feparated by a very fimple procefs; pour into the folution fpirit of wine, and the falt inftantly falls to the bottom, and is faid to be precipitated. Water iffuing from copper-mines, is generally much impregnated with the calx, or ore, of copper, which wants nothing but phlogifton (or the inflammable principle), to become real copper. Ponds of fuch water have bars of iron placed in them, which contain much inflammable matter, and which the calx of copper will fteal by means of a ftronger affinity. Hence the bars become covered with copper, and much is precipitated; while the iron becomes a calx, by having loft its fire. Knives, or any polifhed irons, dipt in fuch water, appear to be converted into copper.

Calcination means the expofing a body, in an open veffel, to a ftrong heat, till no further alteration or change can be produced in it. What remains and withftands the fire is a calx. Bodies in which fire makes no change are called refractory.

Digeffion is keeping bodies over a weak fire, that combinations may be effected by time rather than heat.

Cementation. If one or more folid bodies be pulverized, and expofed to a flow heat in proper veffels, the more volatile parts may be made to cement, as it were, or incorporate with the other parts.

Concentration confifts in increafing the proportion of faline or other matters, by driving off the water in which they are diffolved by heat, or caufing it to freeze, and then removing the ice. For alcohol may be got from common rum or brandy, by freezing the water with which thefe fpirits are united, and the alchol will be found in the middle of the ice.

AFFINITIVE ATTRACTION. Purpofing to carry forward the mechanical and chemical philofophy hand in hand, this lecture is devoted to the firft principles of the moft extenfive and ufeful branch of natural philofophy: for all arts and manufactures are little more than the compofition, or decompofition, of the natural bodies of the earth. We are indebted for many of the important facts in chemical analyfis to a race of vifionaries, who, in the purfuit of the philofopher's ftone, and the elixir vitæ, happily ftumbled upon a variety of difcoveries, that have been of more importance to mankind, than the grand fecrets they were in purfuit of would, had they been found out. Thefe facts, though now fyftemized into a tolerably regular and confiftent theory, fimple in its principles, and, feemingly, accordant in its various ramifications-; yet, I am forry to fay, it does not quite agree with the experiments and obfervations that have fallen in my way to make. I think the grand bafis of chemiftry is attraction and repulfion. By attraction, I mean not only that of cohefion and gravitation (formerly explained), but the affinities of matter; the elective attractions, or local affections of it, that is, the tendency which the conftituent parts of bodies
have to unite readily with fome fubftances, in preference, as it were, to all other parts of matter. Water and fpirits are faid to have an affinity, becaufe they unite with the utmoft readinefs and affection. Water and oil have no affinity, becaufe they will not unite (except by the intervention of an alkali, by which they become foap) ; for if oil and water are fhaken together, it will be found the parts of each attract thofe of the fame kind more ftrongly than the other, and the two prefently feparate. Acids and alkalis have fo ftrong an affinity, that they rufh into union with effervefcence and ebullition; fo ftrong, indeed, is the attachment between acids and alkalis, that one will detach the other from moft compounds with which that other is united. The fea is a compound of frefh water and falt ; yet fo perfectly clear and homogeneous (as folutions generally are), that water and falt may be faid to have affinity. That this felection, this choice, as it were, is but a modification of the attraction of cohefion, I entertain no doubt; for as various effects in chemical experiments prove the particles of matter to be of various fhapes or forms, fuch particles as by their figure can lie conveniently by the fides of each other, or admit their centres coming nearer together, will adhere more ftrongly than thofe combinations where the corners and edges of particles do not fit, but inclofe great fpaces or interfices among them. This laft may be called the attraction of cohefion; the other the attraction of affinity ; but it is a difinction with little difference. Sce. Plate V. in Magnetifm, where the conforming fides of differently fhaped particles fo adjuft themfelves to one another as to become regular figures: fomething like the irregular flat ftones in the Flaminian pavement that make a regular highway.

[^6]lofing its fluidity or tranfparency. The fpirit is called the menftruum, or folvent; but this menftruum having a greater affinity to water than to camphor, upon the admiffion of water to this folution the fpirit forfakes the camphor, and uniting with the water, the camphor is faid to be precipitated, though it fwims on the furface of the fluid. This effect is produced by fimple affinity.

2d. Silver will diffolve in diluted nitric acid (luna cornea), become homogeneous with it, or as clear as if it were one fimple fluid : but nitrous acid has a greater affinity to copper than to filver ; copper, therefore, put into this folution, precipitates the filver, which in precipitating floots into thofe beautiful ramifications called the Arbor Dianx.

3d. Salt of tartar, mixt with falt of mercury (or fublimate, as it is called), will form no union when dry; but mixt with water, a fingular polarity takes place ; they form an orange coagulum, unlike any of the ingredients: but the tartar is an alkali, and has a ftronger affinity to an acid than to the fublimate of mercury; hence a few drops of ftrong nitric acid inftantly diffolves this union, the colour is difcharged, and the whole becomes tranfparent.

4th. The falt of copper (blue vitriol) diffolved in water, has no colour; but a few drops of the firit of fal-ammoniac gives it a polarity, that qualifies it to tranfmit blue light: this polarity is deranged by a few drops of the nitric acid; for by its feizing the alkali, the whole again becomes colourlefs. But to bring about its former polarity, and qualify it again to tranfmit blue light, if a ftronger alkali (oil of tartar) be added, the colour will returin.
th. Salts infantly precipitate and cryftallize when fpirit of wine is adjed to their folution in water; for water has a greater affinity to fpirit than to falt.

6th. Unions are often formed by two bodies, where their product is totally unlike cither. Diluted vitriolic (fulphuric) acid will attack iron, drive out its fire in the character of air, and, uniting with the iron, or rather its calx, form a falt unlike either the acid or the iron, called martial vitriol.
$7^{\text {th }}$. Epfom falt (fulphate of magnefia) confifts of magnefia united with the marine acid. When this falt is diffolved in water, if falt of tartar (a ftrong alkali) be added, it will feize the acid, and detaching it from the magnefia, the magnefia will be precipitated, or fall to the bottom of the folution, in the form of white powder. Or if an equal quantity of a ftrong folution of Epfom falt be put to a ftrong folution of tartar (oil of tartar), the union will form a folid, which is the magnefia of the fhops.

8th. Nitre is decompofed by the vitriolic acid (fulphuric acid), for this acid will feize the alkaline bafes of the nitre, and form with it a vitriolated tartar. But the acid of the nitre, being thus forfaken, has its revenge; for if it be mixed with the vitriolated tartar, it drives out the vitrolic acid in its turn, and feizing its alkaline bafes, forms with it a true nitre, fuch as exifted before the operation. This is called reciprocal affinity.
$9^{t h}$. Common falt is a compound of marine acid and marine alkali; but this alkali (as above) having a greater affinity with the
vitriolic acid, will, when it is poured in, forfake its own acid, and leave it, flying off in fumes. The new falt fo formed is called Glauber's falt. Liver of fulphur confifts of fulphur and fixt alkali : water will not unite with fuiphur ; but as fixt alkali has a great affinity with both fulphur and water, it ferves as an intermedium to unite thefe two fubftances together. Hence the fulphuric waters of Aix-la-Chapelle, Harrowgate, \&cc. Thefe are common inftances of this fpecies of attraction. Three or four heterogeneous ingredients will, in many inftances, attack one another, where affinity could only take place from the joint action of two againft a third, or a fourth, ingredient; from which often refults two decompofitions, and two new combinations. This is called double affinity.

10th. To difengage the volatile alkali from fal-ammonic, if a mixture of two parts of chalk, and one of fal-ammoniac in powder, be expofed to a fand heat, in a retort, adapted to a receiver, a change of principles will take place. The chalk confifts of lime and fixt air; the ammoniac of volatile alkali and marine acid. Both are decompofed; the lime unites with the marine acid, and forms a fixt falt in the retort; and fixt air unites with the volatile alkali, and paffes into the receiver, where it forms a white falt, of a pungent fmell. This is the fal volatile of the flops, and ufed for finelling-bottles.

Becaufe the laws of this, and the other fpecies of cohefive attraction, do not feem to follow the laws of gravity (by diminifhing as the fquares of the diftances increafe), fome imagine them of a diftinct and different nature from the attraction that holds the earth and the planets together. But can fuch fmall maffes as we can make our experiments upon, betray the fame ftrong phænomena
as a world, a planet, or a fun? Could we meafure the ratio of the attraction, exhibited between two corks rumning to meet each other, when fwimming on the furface of water, I entertain little doubt but it would be found to be in the fame ratio as the laws of gravitation. Magnetic and electric attraction probably are the fame alfo. Similar phenomena muft arife from the fame law, if we are not to multiply caufes; which certainly is a moft excellent rule in philofophizing, or examining nature.

Objections are alfo made to fire and light being the fame, becaufe heated iron exhibits no light till it becomes violently heated. Fire lying in a latent fate in metals, muft be ftrongly excited by external heat, before it will betray figns of activity, or fenfible light; for metals have fo ftrong an affinity to fire, and retain it with fo ftrong an attraction, that they muft be attacked with great violence by external fire, or force, before they will part with their own.

11th. If a piece of wood and a piece of iron be put in the fame fire, the wood will let out its light, in a white flame, in a few feconds; but the iron, from its ftrong affinity to light, lets it out by degrees ; the violet (as weakeft part) is feen on its furface firft ; the heat increafed, the blue part of light appears on its furface (at this ftage it is frequently taken from the fire, the colour congeals on its furface, and hence we have utenfils and toys of blue fteel, \&cc.) ; the heat increafing, the other colours, as green, yellow, red, will be expelled in prifinatic fucceffion : but when the heat becomes intenfe, the light is forced out altogether, and the iron becomes white; indicative of the mixture of the feven primitive colours contained in all light.

Affinities are not confined to the groffer bodies of the chemifts; they exift through all nature. Electricity, light, fire, air, water, \&c. have all a tendency to unite with fome bodies in preference to others. We fee, then, that one fubftance will diflodge another, where greater affinity takes place; and that we can make tables of the relationfhip which one kind of matter has to another, and thereby know the refults of moft kinds of mixtures beforehand. For if a fixt alkaline falt be united with vegetable acid, as vinegar, and formed into a neutral falt; on adding to this compound fome marine acid, the acetous acid (vinegar) will be difengaged, fo as to fly off in a moderate heat, leaving the marine acid in poffeffion of the alkali: if then the nitrous acid be added, it will, in like manner, difpoffefs the marine, which will rife in white fumes ; though, without fuch an addition, it could not be detached from the alkali by any degree of heat: but on the addition of the vitriolic acid, the nitrous gives way in its turn, exhaling in red fumes, leaving the laft acid in full poffeffion of the original alkali.

From numberlefs affinities like thefe, that have been difcovered by the labours and experiments of the laboratory, have refulted the ufeful tables of affinities by Geofroy, Bergman, Black, \&c. A fpecimen of which can only be given in this work. The fubftance to which other fubftances are related is generally placed in capitals at the top of the table; and the next fubftance under it, is that to which it has the greateft affinity; the next under that a lefs, and fo on; thus :

Vitriolic Acid.	Nitrous Acid.
Terra ponderofa	Vegetable alkali
Vegetable alkali	Foffil alkali
Foffil alkali	Terra ponderofa
Lime	Lime
Magnefia	Magnefia
Volatile alkali	Volatile alkali
Clay	Clay
Zinc	Zinc
Iron	Iron
Lead	Lead
Tin	Tin
Copper	Copper
Antimony	Antimony
Arfenic	Arfenic
Mercury	Mercury
Silver, Gold, \&c.	

Lime.	Fossil Alkali.
Acid of fugar	Vitriolic acid
Acid of forrcl	Nitrous acid
Vitriolic acid	Marine acid
Acid of tartar	Phorphoric acid
Phofphoric acid	Acid of fugar
Nitrous acid	Acid of tartar
Marine acid	Acid of forrel
Acid of lemons	Acid of lemonss
Acid of benzoin	Acid of benzoin
Acetous acid	Acetous acid
Acid of borax	Acid of borax
Aeirial acid	Aeerial acid
Water, \&c.	Water
	Unctuous oils, \&c.

That is, fuppofe A the principal fubftance to which the other fubftances are related; and the other fubflances are $B, C, D, \& c$. Now if A be applied to two or more of thefe fubftances, $B, C, \& c$. at the fame time, and in quantity fufficient to unite with each of them fingly, it will generally unite to only one of them, as A to B, and difregard the reft. Sometimes A will attack both B and C, and divide itfelf between them; and fometimes the compound $A B$ being prefented to C, A will forfake B, and form an union with C, \&c.

SECTION II.

Of Combuftion.
WHEN heat is applied to wood, the inflammable principle of the wood (i. e. the light it had derived from the fun) has that dormant
principle of expanfion put into action by the heat; and if vital air be about it, comburtion and decompofition will take place; the wood (like every thing elfe) turning black, before it parts with its light to the furrounding fpace. A fmoke is produced, which is a mixture of water, oil, volatile falts, air, \&cc. And when the heat is carried to a certain point, the wood takes fire, and the combuftion proceeds till the inflammable principles are diffipated. In this operation there is a diminution of the air about it; and light, and its concomitant heat, are extricated. For as no inflammation will take place without air, air muft mix itfelf with the heated vapour, before it will ignite into real flame. As refins are a product of the fun, the more there are in any vegetable, the greater will be the light and heat in the combuftion. The foot produced in this procefs confifts of parts imperfectly burnt, that are decompofed only in part, and have efcaped the action of air, and which may, therefore, be burnt over again. For when the combuftion is perfect or effectual, as in Argand's lamp, there is no perceptible fmoke. The fixed matter after combuftion is afhes, containing falts, earth, and often iron and other metals. Is not this procefs, firft difturbing and then igniting the fixt light of the combuftible body, by the near approach and contact of another body, already in a ftate of heat and combuftion? Muft not coals, candles, wood, \&c. be heated before they will ignite, and by which the light of the body to be burnt had its dormant repulfion excited? The body fwells, admits the neighbouring ignition, and has its latent light let loofe or expelled in the character of flame; and is not this the light it originally derived from the fun? Air being kept in a fate of fluidity, by the latent fire or light united with it, is neceffary to the fupport of flame. How? It adds fire to fire. For the fire contained in the air around
the ignited body joins the combuftion, and is alfo difperfed; the air firft fwells, by its inherent fire being excited by heat, and then becomes diminifhed in its volume, by lofing a confiderable portion of that fire, and of courfe of that repulfion, which fet the particles of the furrounding air at a diftance. Why then fhould we believe, with modern chemiffs, that the pure part of the air is univerfally abforbed by the body in combuftion? We find no air in the fnuff of a candle, nor in the afhes of coals or wood.

This doctrine is not meant to invalidate the well-known facts, that metals, while calcining, require a current of air to pafs over them; that they imbibe a portion of the pure air in that paffage, and diminifh air confined with them in clofe veffels, when calcining by the ufe of burning glaffes. Thefe, and many other circumftances, prove that air is imbibed by metals when in a fate of fufion; and that they would not calcine to a calx, or oxyd, without pure air ; and that it is that air, going into a concrete ffate in the calx, that makes the oxyd of a metal, fo calcined, heavier than the metal from whence it was made: for a pig of lead, 100 lb . weight, will produce 110 lb . of minium.

Though it is an article in our chemical faith, that nothing is deftroyed; that the original particles of matter are the fame as they came out of the hands of their great Maker; and that it is their various combinations that caufe that variety we fee in bodies;-I fear this is not ftrictly true. Air certainly is diminifheci, or loft, or annihilated, where combuftion is going on ; and it is not to be found in the aflhes or cinders of burnt bodics. Yet thefe afhes and cinders become again combuftible by expofure to light ; for, fo expofed,
they rife again in vegetables, and all vegetables are combuftible : thus may be verified the affertion, that " light unburns burnt " bodies."

Marble, chalk, fhells, and all calcareous earths, may be fuppofed to have no affinity to fire or light ; for they let out none in their decompofition. When burnt in the fire, they may be made red hot, but they produce no flame: the fixt air, one of their conftituent parts, extinguifhes flame, and refifts the entrance of electricity. For fire propagates itfelf with moft difficulty through fuch bodies as refufe to conduct electricity ; and vice verfa. When calcareous earths are calcined, or burnt into lime, their fixt air and water are expelled, and fire is forced into their place. Hence a quantity of fixt fire becomes a quality of the quick lime, which fleeps latent and infenfible, till called into action by its ftronger affinity to water: this applied, the calcareous bafis feizes its old friend, and expels the new, which flies off in fenfible heat. Fixt air being alfo applied and imbibed, the mafs will become marble, chalk, fhells, \&c. again.

Thus we fee that nature has two ways of cooling bodies, the one by diffipating fire, the other by fixing it. For different bodies at the fame temperature really poffefs very different quantities of fire, though they rife the thermometer to the fame degree; for fome bodies have a ftronger affinity to fire, and abforb it in greater abundance, than others.

When we burn a combuftible body to obtain heat, that heat is from the ignited body repulfed radiantly through the furrounding air, which air is preffing towards the fire on all fides, and fupply-
ing it with its vital part: hence a kind of contention takes place between the emanating particles of heat rufhing from the fire, and the currents of air rulhing towards it ; for air of itfelf is a bad conductor of heat, and fome confider it a non-conductor of it. Fig. 3, Plate II. reprefents heat iffuing from the fire by arrows pointing from the fire ; while the motion of the air is reprefented by darts pointing towards the fire.

As fire propagates itfelf through metallic bodies more eafily than fuch as refift electricity, we find that molten lead poured into a fquare veffel, three fides of which are of wood, and the fourth of lead, the heat will penetrate the lead fooneft, and cool on that fide foonef.

That air is neceflary to combuftion, is exemplified in its mixture with the vapour rifing from a fire, or candle, and qualifying that vapour to become flame. For heat penetrating the wick of a candle, rarefies and fends off a quantity of unconfumed oil in vapour. If a tube of paper, eight inches long, be held over the candle when blown out, and a lighted piece of paper be held over the upper end of the cylinder, the fire will follow the hot vapour down it, and light the candle.

The fpecific fire contained in bodies being incapable of meafurement by the thermometer, a means has been invented of afcertaining it by the quantity of ice which bodies, at an equal temperature, will diffolve in the fame time. The difference of the quantity diffolved is fuppofed to give the proportion of fpecific fire contained in the feveral bodies. This inftrument is called a calorimeter. Ice abforbs all the heat communicated to it, without communicating
any part of that heat to other bodies, until the whole is melted; fo the fpecific fire contained in bodies may be calculated by the quantity of ice which it will melt.

This inftrument has its ice, and the bodies to be tried, furrounded by an inclofed cavity of air, to fecure the materials from the action of the outward air, or heat or cold of contiguous bodies; for air and water may be almoft faid to be non-conductors of heat. If the end of a red-hot iron be held perpendicularly, an inch diftance, over a drop of water, on wood or metal, the water, wood, or metal, will receive no heat. Hence the lids of kitchen pans being made hollow (to contain more air), the heat camnot efcape, and the contents within are heated, and kept fo, with a fmall fire.

Salts, perhaps, are the chief links ufed by nature for confining and fixing the fubftance of fire. What are pyrites in the mineral kingdom, but falts united with fulphur, which being alfo united with a few metalic particles, confine a great quantity of fire? In the vegetable kingdom, does not common fire difengage itfelf the more eafily from wood, in proportion as that wood is deprived of its faline particles? The flame of wood, floated down rivers, burns clear, probably from the falts being diffolved by the water: and rotten wood, decayed by lying in moifture, emits light, by having loft the tenacious links of falts, by which the fire was kept imprifoned. In confequence of this diffolution, fire is become enabled to difengage itfelf by virtue of its expanfive force, though too weak to affect our fenfes by heat. May not the lofs of faline particles, in fifh going into a ftate of putrefcence, develope their conftitutional fire, and occafion their luminous appearance? This light in wood, fifh, or flefh, becomes extinct when expofed in vacuo, ind
extreme cold, and in fpirits. Yet whenever a body reaches the proper temperature it becomes luminous, independent of any connection with air, for iron wire becomes red-hot immerfed in molten lead: but it will not burft into flame without air. An earthen crooked tube immeried in an iron veffel filled with fand, and made red-hot: if air be blown through the tube it will not be luminous to the eye; but when a gold wire is thruft into the tube, the end of the tube will become luminous to the eye. Muft not this be the iuflammable matter of the gold, let loofe by the heated tube, and ignited in a degree by the hot air ?

Sugar, and many other falts, have their fire expelled by rapid bruifing : for fine fugar chewed in the dark will make the mouth luminous.

Fire may be inftantaneoufly detached from dry air, and made vifible, by tying a wet bladder over one end of an open cylinder of glafs, drying the bladder, and putting an empty Florence flafk under it, on the air-pump: when the air is nearly exhaufted in the dark, the bladder will burft by the preffure of the air upon it, and exhibit light on the flafk, by the fudden derangement of that air which rufles into the vacuum.

FIRE, like all other material fubftances, is fubject to be attracted by other bodies ; by this tie fome of its properties are obfcured, and new ones produced. Like an acid, when faturated with an alkali, that cannot be diftinguilhed by its tafte, or any of its original properties; fo fire lofes with its liberty (when abforbed in other bodies) its chief property, the power of burning or producing fenfible heat. This power, however, is only fuppreffed, not deftroyed; for
it will again affume its wonted vigour, when the bond of union is broken by combution, ftronger affinities, \&c. Fire is capable of condenfation, as in gunpowder, pulvis fulminans, phofphorus, \&c. Nitre, charcoal, and fulphur, are the ingredients of gunpowder. Nitre contains nearly ten times its bulk of vital air (which, from a retort, may be expelled by heat). Charcoal is faid, by Bergman, to contain ninety-nine parts in one hundred of inflammable matter, or, what I would call, concentrated fire. Here, then, are the two ingredients of inflammability; but what is to ingite them, and let loofe their imprifoned fire? Sulphur ; which takes fire more fuddenly than moft other fubftances, and muft, therefore, be incorporated with the other two in the moft intimate manner: powdermills are for this purpofe. From inftantaneous ignition, the fire of the charcoal, and that of the vital air, burft into a flame, and if unconfined, would occupy 244 times the fpace they did in the granular ftate of powder; or difplace 244 , times their bulk of air: or if the powder were confined in a face no larger than its own bulk, it would exert, by the repulfive force of fire it produces, an elafticity equal to 244 times that of the air. The new chemiftry accounts for the effects of gunpowder from the rapid, nay inftantaneous, decompofition of the nitre, whofe difengaged oxygen ignites the fulphur and charcoal.

Fulminating powder is a mixture of three parts nitre, one of fulphur, and two of fixt alkali : a powder that, being heated in an open veffel to melting, explodes with a loud report. Whilft heating, the nitre and fulphur melt together, and form a nitrous fulphur: the acid of the nitre is attracted by the alkali, fo the vital air of the nitre being intangled by their union, and inflamed by the fulphur, burfts from both with flame and explofion.

Ploopporus. This magazine of fire is formed from the bones of quadrupeds, birds, and fifhes, long digefted in vitriolic acid, and which yields microcofmic falt in great abundance. The union of this falt, with an equal weight of bruifed charcoal, affords, by diftillation, a confiderable quantity of phofphorus. This concentration of fire is held fo loofely by its acid, that a bare expofure to air (the other ingredient of inflammation) ignites it: hence it is kept for ufe under water. In a heat equal to 60° it burns with a weak flame like fulphur, and can only be feen in the dark; but when expofed to a heat equal to 160°, or when that heat is produced by rubbing it between the folds of brown paper, it burfts into a vivid and deftructive flame. Being made into crayons, we can write upon a wall with it, and read the writing in the dark, for every part of the letters produce real flame. Diffolved in oil, the face may be covered with it, harmlefs, though it has a frightful appearance in the dark. If a few grains of phofphorus, and an equal quantity of cauftic alkali, be put into a fmall glafs retort (having a long neck), and with thefe a finall fpoonful of water; if the retort be held over a candle, and the end of its neck be juft immerfed in water, the vapour, as it rifes to the furface of the water, burits into flame, and its fimoke rifes in phantaffic rings to the top of the room. A grain of phorphorus, mixed with the fame quantity of the oxygenated muriate of pot-afh, and laid on an anvil, if ftruck with a hammer will explode with a terrible report. If ignited in vital air, it produces for a few feconds the moft intenfe light.

Many"other fubftances produce light and fire by collifion, and fmell phofphoric, but have no other qualities in common with it, as phofphate of lime, tremolite, fugar, gum-elemi, black jack, and
various refins. Two pieces of borax firuck together produee a very ftrong white light.

The oxygenated muriate of pot-a/b exhibits its fire by friction, and various mixtures: it is a falt, and produced by the bleaching gas, and a folution of pot-afh. The bleaching gas confifts of

3 parts manganefe,
8 parts common falt,
6 parts vitriolic acid,
12 parts water.
Thefe ingredients are put in a ftone retort, which is put in a water bath, and its neck luted into the fide of the room in which is loofely hung the cloth to be bleached. All vegetable colours are feized and diffolved by the gas that iffues from this retort, and by the liquor which fubfides when the gas becomes condenfed by the cold of the room. Coloured rags become white as fnow; as well as paper of a dull colour, \&c. Is not this from an affinity between the colours of folar light, and the oxygen or vital gas? If this gas be received in a large ftone bottle, containing a ftrong folution of potafh in water, the alkali will feize the acid gas, and the water will become ftrongly impregnated with a neutral falt. When this water is flowly evaporated, cryftals will begin to fhoot, which being collected and dryed, is the oxygenated muriate of pot-a $/$. If thefe cryftals are not white, and pure, they may be diffolved again in frefh water, and again evaporated.

1. A pinch of this falt, mixed with as much fulphur, and rubbed in a fone mortar by a glafs peftal, produces feveral loud cracks and vivid flafhes of light. For the friction produces a heat fuffi-
cient to inflame the fulphur, which ignites the oxygen gas, and excites its latent fire.
2. If to two or three grains of this muriate, a few drops of frong nitrous acid be added, and while they are uniting, a grain or two of phofphorus be dropt into them, vivid and beautiful Hafhes of light will iffue from the mixture for feveral minutes.
3. Half a grain of the falt, and half a grain of phofphorus, rubbed in a mortar, produce various loud explofions.
4. One grain of loaf-fugar, rubbed with two grains of the falt, gives many reports ; and if a few drops of fulphuric or nitrous acid be added, a flame rifes from the mixture to a great height. The oxygen gas of this falt being fo eafily difengaged, a little caution is neceffary in making experiments. Similar refults to the above take place with charcoal, cinnabar, orpiment, cotton wool, oils of camphor, refin, \&c.
$5^{\text {th }}$. One hundred grains of this falt diftilled in a retort will in the pneumatic apparatus produce feventy-five cubic inches of very pure oxygen gas.

The fiery dragon of the ancient alchemifts is another inftance of the production of fpontaneous fire. If into an ounce of oil of turpentine, or any effential oil, half an ounce of ftrong nitrous acid (dephlegmated by a few drops of vitriolic acid) be poured; a prodigious flame and thick fmoke inftantly arifes? Effential oils contain much latent fire; which being diflodged by the acid (feizing the vegetable part of the oil), ignites with the contiguous air.

Homberg's pyropborus is made by one part fugar, and three parts alum, to be melted, ftirred, and dried on an iron fhovel, till it becomes a blackifh coal; when bruifed, and put into a long-necked bottle, and the bottle into a crucible, filled up with fand, the crucible being kept red-hot an hour, or till a weak fulphureous flame has iffued a quarter of an hour out of the bottle; when leifurely cooled and corked clofe in another bottle, if a little of it be poured on brown paper, and breathed upon, it will take fire. Or a more compendious pyrophorus may be made by nearly filling a tobaccopipe, with two parts calcined alum, one of powdered charcoal, and one of falt of tartar. Thefe covered with fand, and kept half an hour red-hot, when cooled and knocked out will take fire; and if, on paper, wet with oil of turpentine, will burft into flame.

Fixt alkali keeps fire in a fate of combination ; breathing on it gives the alkali moifture, which detaches it from the fire ; that fire having motion thus given to it, and confequently heat, that heat is fufficient to ignite the mafs.

Pyrophori will not ignite in vacuo, though the containing tube be held in the flame of a candle; but if a little air be let into it, it will inftantly ignite.

It is faid that natural phofphori, in glow-worms, rotten wood, \&c. will fhine when covered with oil.

Heat is often produced where there is no appearance of combuftion ; and often the appearance of fire, when too weak to produce fenfible heat: yet is fire never put into motion from a latent ftate ${ }^{\text {, }}$ but it produces fenfible heat in its extrication.

Mixtures that produce vapour, produce cold in the mixture, and heat in the vapour. If half an ounce of fal-ammoniac, be put in three ounces of fulphuric, or marine acid, and a thermometer be put in the liquor, it will fall three inches; while another, held in the vapour, will rife. Hot coals, thrown into water, cools it for a moment ; and the vapour is hot: for latent fire, when put into action, or expelled from bodies, always produces fenfible heat; and the body is cooled from whence it is expelled.

SECTION III.

SALTS are every thing with a fharp tafte, and foluble in water. Sea, or kitchen falt, is a combination of marine acid and marine alkali. Luna cornea is a falt formed by the union of filver in acid. Verdigris, falts formed by the folution of copper in vinegar; in reality, the ruft of copper. Ammoniacal falts are an acid faturated with volatile alkali. Sugar, an effential falt, containing vegetable acid, combined with earth and oil. Pot-afh, falt found in the afhes of vegetables. Nitrous falts are found in old walls, or places abounding with animal and vegetable filth; they are neutral, and produce nitrous acid and fixt vegetable alkali : all falts containing acid and alkali are called nevitral.

SECTION IV.

EARTHS make up the folid part' of our globe: and under this name are included rocks, ftones, mould, \&ic.; and though thefe are
intermixed, and afford innumerable varieties, yet their component parts are but five, viz. lime, filex, argil, magnefia, and barytes.
ift. Calcareous eartlos: thefe are limeftone, chalk, marble, ftalactites (or ftone icicles), bones of animals *, various fluors, gypfum, or plafter-ftone, fhells of fifhes, and moft earths that effervefce with acids, that fall in white powder when burnt, that will not melt into glafs by heat, but will melt when mixed with borax, or calces, and affift the fufion of lead, copper, and iron. Calcareous earth contains much fixt air, which, as well as the water the earth contained, is expelled by the fire of the lime-kiln : having thus loft two of its conftituents, its cohefion is relaxed, and it becomes liable to crumble into a powder fit for mortar, and other purpofes of building : water facilitates this; for flaking lime is but expelling the fire it imbibed and fixt while calcining; fo the calx receives the water, its old friend, and expels the new. Quick-lime is cauftic, and diffolves the flefh of a defunct in a few hours; this is from its ftrong attraction of fixt air, which it tears from every kind of body that holds it with lefs affinity than itfelf. Limewater alfo acquires a cruft on its furface of real lime-ftone, when expofed to the air; for there is fixt air in the atmofphere. Gypfum, or plafter-of-paris, expofed to a moderate heat, parts with its water of cryftallization : when after this it is made into a pafte with warm water, and poured into a mould, for bufts, \&c. that water, on cooling, becomes but barely the water of cryftallization, and the plafter becomes folid in an inftant.

Calcareous earth is fuppofed to be the wearing down of Thells:

[^7]from their famenefs to the limeftone maffes found in all parts of the earth; from the fhells on living fifh growing lamina over lamina, till they become fifty or fixty times as large as the fifh itfelf; from the fecundity of thofe fifhes which throw off this ftony incruftation; and the numberlefs generations that are extinct ; it is not, indeed, improbable that a confiderable part of our globe may be covered with their remains.

Calcareous earth being fufceptible of extreme divifion, water, ${ }^{\text { }}$ which filters through its rocks, carries off thefe fine parts, and depofiting them on fponges, birds'-nefts, mofs, bunches of vegetables, or any matter where the water can flowly evaporate, the fibres foon become covered with this ftony incruftation, which affumes the flape of the body it covers; and fuch petrifactions are thought, by the vulgar, to be water tranfmuted into ftone. Hence the ftalactites, or icle-fhaped ftones, impending from the roofs of caverns; the pyramidal fpars, \&c. Towns and houfes built on a chalky or limeftone foundation, are obferved to be lefs liable to infectious or epidemic diforders, than the inhabitants of any other fituation.

2d. Siliceous earths are flint and precious fones, as diamonds, rubies, topaz, opal, agate, quartz, gritftone, cornelian, jafper, \&c. Many of thefe ffrike fire with, and even fcratch fteel : they do not melt with the ftrongeft fire, nor effervefce with acids; though they are acted upon by fluor fpar. Alkalis diffolve it in the moift, as well as the dry way, i. e. by melting the earth and alkali together, in a crucible, when it becomes glafs; or by digefting them, well bruifed, with water.

> Argillaceous eartls are clays that harden in the fire, and are ufed
for pottery ; clay-marles that effervefce with acids, and moulder in water ; boles, flates or fchiftus, and mica. Alum is a combination of argillareous earth with vitriolic acid. The moft obvious characters of this earth are, its adhefion to the tongue, or any wet and foft body; its ductility and kneadubility, by which it can be formed into earthen-ware, bricks, tiles, \&cc. thefe generally affume a reddifh colour from the iron the earth contains, and a folidity from the flinty fand that vitrifies and holds the parts together while heating. Clays alfo include much water, which, being rarefied in the baking, is apt to crack the clay; but if the water be leifurely expelled, the clay contracts in baking. On this property is confructed a thermometer * for meafuring the heat of furnaces, by igniting a fmall cube of baked clay, of known dimenfions, therein, and afterwards meafuring its contraction.

Magnefian eartb. This ftone is remarkable for a foapy, greafy feel. Steatites are of this genus, of a greenifh colour, and foft enough to be fcraped with a nail. Soap rock, Spanilh chalk, Amianthus, Venetian and Mufcovy talc, and afbeftos, capable of being fpun into threads, woven into cloth, and that cloth indeftructible by fire, are all magnefian. Magnefia may be artificially made by mixing a folution of Epfom falt with an equal quantity of a folution of tartar (oil of tartar) in a glafs, covering it with the hand, an l fhaking them together, when the magnefia will initantly become folid in the glafs: this fhews, that the water, which kept each in a fate of complete folution, was but juft enough for the water of cryftallization, when the falts came together. This earth, as well the others, is capable of a vaft variety of combinations and eliects, which can only be cnumerated in works written exprelsly on the

[^8]fubject of chemiftry. After the cryftallization of nitre, a thick liquor remains, which is called motber water: on pouring fixt alkali into this water, there falls down a white earthy precipitate, which, when wafhed and dried, forms the magnefia alba of the fhops.

Zeolites are harder than calcareous ftones: they melt eafily in the fire, with fivelling and ebullition ; and diffolve with acids, without effervefcence.

Barytes, or ponderous earth. This ponderous foffil is above four times the weight of its bulk of water, and is found in the neighbourhood of mines, or veins of metal ; it refembles alum, but is of a ftriated texture, and is often found in the peculiar figure of a number of fmall convex lenfes, ftuck edge-wife in a ground. It decrepitates in the fire, melts before the blow-pipe, and fluxes diffolve it with effervefcence. This ftone, when ftrongly heated, exhibits a bluifh light in the dark ; but to make it a real phofphorous, it muft be pulverifed into powder, kneaded into a pafte with mucilage of gum tragacanth, and formed into thin pieces, like the blade of a knife : thefe pieces are afterwards dried, and then ftrongly calcined in the midft of the coals of a furnace ; they are then cleared by blowing on them with the bellows. In this ftate, if they are expofed to the light for a few minutes, and inftantly carried into a dark place, they fhine like glowing coals; even under water! and though in time they become deprived of this property, it is reftored again by a fecond heating.

GRANATE is a compound ftone, often confifting of quartz, feld-fpar, and fchorl, mixed in a variety of fhades. The paving ftones of the ftreets of London confift of quartz and fchorl.

SECTION V.

Metals.

PERFECT metals are thofe that cannot be decompounded, viz. gold, platina, and filver. Imperfect metals are iron, copper, tin, and lead, which in fire, or ftrong menftrua, lofe their metallic properties, become an earth, or calx, but which are revivable into their original metals by phlogifton, or fire. According to the new principles of chemiftry, metals, in the act of calcining, imbibe oxygen air from the atmofphere, and thence become calces, or oxyds : thefe oxyds are reduced (revived) by their oxygen combining with the charcoal of the fatty or inflammable fubftances, heated with them, by which carbonic acid gas (fixt air) is formed, and flies off. The metal being thus left free, recovers it metallic or reguline form. Whether this, or the phlogiftic doctrine, accounts for this interefting and curious phænomenon moft rationally, muft be left to the reader's judgment. That light, or fire, is one of the principal conflituents of all vegetables ; that this fire is capable of being fixt in them by charring in clofe veffels ; that charcoal holds this inflammable principle by ftrong affinity, and is not much difpofed to part with it, even to the air, except that menftruum have its attracting reinforced by ftrong currents from bellows (fee Optics). Do not the ores of metals imbibe this inflammable principle from the ignited charcoal in a furnace, and thereby become metals? for metals will burn and let out this inflammable principle, like any other combuftible body. As fire repels itfelf, this principle can be forced out of the metal by great or continued ignition, and the metal again becomes an ore, or, which is the fame thing, a calx : to this calx I conceive the vitriolic acid to have a ftronger affinity; and, therefore,
when iron is attacked by that acid, diluted, the inflammable principle is diflodged from the iron, and rifes, with water, in the character of inflammable air, while the acid is feizing the calx, and forming with it the falt of iron (green copperas). This copperas confifts of the calx of iron united with vitriolic acid, and if diftilled in the common apparatus, fig. 1, Plate XV. yields vital air, and the iron becomes revived, and is found at the bottom of the retort. Iron, alfo, acquiring more ruft when expofed in large towns than on mountains, or in the country, from the acidity of fmoke; that acidity qualifies the calx (ruft) to produce vital air, when affifted with a little vitriolic acid, in the above apparatus. Do not thefe prove that vital air may be generated by acid and fire, as well as attracted from the atmofphere?

All other metals are liable to nearly the fame routine of compofition and decompofition, and therefore fixt fire may be faid to be one of their moft important ingredients.

Metals are all fufible, though at very different temperatures, and affume a cryftallized figure in cooling; for if a hole be opened in the bottom of the melting-pot, after the furface of the metal has become folid, and the fluid metal underneath be fuffered to run out, the under furface of the folid metal will be curioully cryftallized. This tendency to polarity, if difturbed, when the metal is paffing from the fluid to the folid ftate, will make it affume a very different appearance and texture to that which takes place when it cools gradually and in quiet; for even water in cryftallizing, if ftirred with a ftick, may become folid, but it will not be like ice. Metals in a ftate of folution will grow or fhoot up the fides of containing veffels; but light is neceffary to the production of this effect.

The affinities of metals to each other are various; fome will not unite at all, others unite and combine readily; hence the ufe of folders. Tin unites pieces of lead; brafs, gold, or filver, are folders for iron. Tin and copper unite in fufion, and make brafs, \&c.

Metals are moftly foluble in acids, with which, as above, they form falts; and act upon the metals as they would do upon any other combutible fubftance. If an alkali be added to a metallic folution, it feizes the acid, and the metal, fo detached, falls to the bottom. But if a metal be put in the folution to which the acid has a greater affinity, the acid will forfake its firft comnection, and unite with the fecond; hence the firf metal becomes precipitated, and the fecond diffolved.

Metals are opaque (though leaves of gold $\overline{2 \pi}{ }^{2}$ tranfmit green light), hence their great ufe in mirrors ; this opacity continues when they are in a ftate of fufion. Their Jpecific gravity is greater than that of any other kind of body. The malleability of metals is one of their moft ufeful properties; hence they can be extended, flattened, \&c. by the hammer, particularly when heated, and made into various inftruments and utenfils. By their tenacity or ductility they can be drawn through holes of various diameters into wire of all thickneffes.

Moft metals when expofed to heat and air lofe their luftre, and become calces or oxyds; and fome even take fire when expofed to a ftrong heat. When thefe calces are covered with powdered charcoal, or any other inflammable matter, in a crucible, and expofed to a ftrong heat, they become metals again.

This curious fact is accounted for on the principles of the new chemiftry in this manner: All metals are fuppofed to be fimple fubftances; and that in melting and calcining they do not lofe any thing, but acquire weight by attracting oxygen air from the atmofphere, and become an oxyd or calx heavier than the metals themfelves. Hence by furrounding thofe oxyds with powdered charcoal, in a retort, as fig. 4, Plate XV. and expofing it to a ftrong heat, a quantity of carbonic acid gas comes over into the pneumatic receiver, fig. 1, Plate XV. and the metal is found reftored within the retort. The calx is faid therefore to be a compound fubftance, confifting of the entire metal united with oxygen; and that the oxygen being expelled by heat, with the gas of the charcoal, thefe together compofe carbonic gas, and leave the metal behind. To prove the truth of this theory, eight ounces of tin was put in a glafs retort, fig. 4, Plate XV. with a long flender neck: it was heated flowly till the tin began to melt, for the purpofe of expelling fo much air from it, that when its point was hermetically fealed, and the retort returned to the fire, it flould not burft. The retort was then accurately weighed, and replaced on the fire; and on the melting of the tin, a pellicle formed on its top, which, gradually increafed, became a grey powder, that by a little agitation funk to the bottom of the liquid metal; but in about three hours this oxydation ftopt, and no further effect could be produced on the metal. The retort was then weighed, and found precifely of the fame weight as before the operation. When the point of the retort was broken the air rufhed in, and the retort was found ten grains heavier; and the metal and its oxyd being weighed together were found to be ten grains heavier than the eight ounces of tin originally fubjected to the procefs. Hence it is concluded, that the increafe of weight in metals during their cal-
cination is olving to their union with the oxygen part of the air; as it is found that the remainder is azotic, incapable of fupporting flame or animal life.

Still do I fear there is fallacy in this fimple and elegant theory:the gas called carbonic has very different qualities when produced from heated charcoal, from fermenting liquors, from calcareous earths, or the mixture of oxygen and carbonic gaffes together, yet all thefe go by one name. Any inflammable matter, as well as charcoal, will revive (or reduce) the calces of metals to their metallic ftate; and the gaffes fo produced are very different from that called carbonic in the foregoing theory. Befides, in this experiment a quantity of air was expelled from the retort by heat, in order when it was hermetically fealed that it fhould not burf: -now this air, fo expelled, was not weighed; nor was it eafy to catch it or weigh it ; but except it could be proved, that the air fo expelled bore fome proportion to the ten grains acquired, it does not follow that the ten grains fo rufhing in did not arife from the rarefaction in the retort; for certainly no allowance is made for that in the experiment.

Though I admire the zeal and accuracy of the truly lamented, and candid Lavoifier; yet, alas! when we weigh air, particularly fome a little heavier, and fome much lighter, than our atmofpheric air, even his accuracy becomes fufpicious. But who can be cold enough not to admire the alacrity and the fire which generally accompanies his refearches?-it may fometimes overfhoot the mark, but ftill it carries with it the genuine marks of genius and invention.

Gold is unalterable by art; is the heavieft of all known bodies
(except platina) ; is capable of fuch cxpanfion, that a grain may be beat into a leaf of fifty-fix fquare inches, and the leaf itfelf be but $\sum_{2} \frac{1}{\partial \sigma \sigma}$ part of an inch thick; yet filver wire may be gilt, or covered with a fkin of gold, that is not more than one twelfth of the thicknefs of leaf-gold. Gold bids defiance to the utmoft power of fire, fo powerful is its attraction of cohefion ; infomuch that it has been kept for weeks in a glafs-houfe furnace, and expofed for hours in the focus of Parker's famous lens, without lofing a grain of its weight. A wire of one tenth of an inch in diameter requires 500 lb . weight to break it. Reduced into powder, it is eafily attacked by acids; but its metallic nature it is faid is in no-wife altered. Gold diffolved by aqua regia, and then precipitated by volatile alkali, wafhed, and fuffered to dry in a cool place, expofed to a finall degree of heat, explodes with a quicknefs and violence far exceeding gunpowder (fee Combuftion). A precipitate of gold from aqua regia is thought by fome to be a true calx, though moft metals precipitate it; lead, filver, iron, and copper, throw it down in its metallic fate. Potable gold is gold taken from its folvent by xether and effential oils; this liquor evaporated, leaves gold of the utmoft purity, whofe fpecific gravity is near twenty. Guinea gold is alloyed with copper, cleven parts gold to one of copper, fo as to make its fpecific gravity only 17,75 . Gold is found in its metallic fate in moft parts of the world, in lumps and grains, in the fands of rivers; fometimes bedded in earths or ftones; when thefe are pounded and boiled with mercury, the mercury will unite, or amalgamate, with the gold, and may be eafily feparated from it by diftillation, as the mercury will rife with a fmall degree of heat, and leave the gold.

Silver, the next perfect metal, fufes in a ftrong degree of heat (igniting before it melts), and is nearly as ductile as gold, though
harder. In leaf-filver, it is three times as thick as leaf-gold. The fumes of fulphur tinge it black; and the fulphur will, in time, incorporate with its furface, and form a coating. The nitrous acid feems its natural menftruum, for it will diffolve half its weight of filver; and the folution is very cauftic, corroding animal fubftances, and attacking whatever contains inflammable matter, feemingly with an endeavour to become revived. Fulminating filver is made by diffolving a very fimall quantity of pure filver in pale nitrous acid, and precipitating it by the addition of lime-water : this calx, or precipitate, after decanting the water, is to be dried by expofure to air and light three days: this dried calx being firred, or agitated, in a folution of cauftic volatile alkali, appears a black powder, from which the fluid muft be decanted, and the powder left to dry in the air. This is the fulminating powder, which, when once obtained, can no more be touched ! for the fmalleft agitation, any thing dropping into it, even a drop of water, will make it explode with a detonation, and deftruction of every thing around it, to which a cannon is but as a fquib! The theory of this terrible effect is much the fame as that of fulminating gold. Copper will feparate filver from its union with nitrous acid: if a drop of the folution be put on a fmall copper wire, between two fimall flips of glafs, in a microfcope, a beautiful foreft will inftantly rife from the copper, which is a precipitation, or cryftallization, of filver, and called the Arbor Dianæ: for nitrous acid having a greater affinity to copper than the filver with which it was united, feizes the copper, and leaves the filver. A more palpable filver tree may be produced, by amalgamating four drachms of leaf-filver and two drachms of mercury into a pafte. This pafte muft be diffolved in four ounces of pure nitrous acid, then diluted with a pint and a half of diftilled water, and agitated; then preferved in a bottle, with a ground ftopple, for ufe. When this
preparation is to be ufed, about all ounce of it may be put in a two or three ounce phial, and a foft amalgam of filver and quickfilver, about the fize of a pea, dropt into it, and left at reft. In a few days, fmall filaments will fpring out of the ball of amalgam, which will fhoot into branches, and become a beautiful metallic tree.

Fifteen parts filver, and one of copper, melted together, is the ftandard of the Britifh coinage. This metal is often found native, though generally minerallized ; fometimes in maffes, and often diffufed through fand, ocre, or lime-ftone; feldom pure: but the ftones or earth, with which it is united, being pounded, and mixt with mercury, the filver will amalgamate with the mercury, and leave the ftones, or matrix, with which it was united in the mine (for leaf-filver will amalgamate on the hand with mercury) : now as mercury rifes with fo fmall a degree of heat, it is eafily feparated from the filver by fimple diftillation. This is the manner in which the Spaniards work the mines of Mexico and Potofi.

A wire of filver, one tenth of an inch in diameter, will fuftain 270 lb .

Platina, or little filver, has yct been only found in the gold-mines of Peru and Mexico, and the difcovery is of recent date : it is found in fimall angular fhining grains, like clean fteel filings, and is the heavieft body in nature; for when cleared from the iron-looking fand which generally accompanies it, its fpecific gravity is twentytwo, and gold is only between ninetecn and twenty. It will not melt in the moft intenfe fire ; though it has yielded to the focus of a large burning lens, and become a beautiful white, untarnifhing, and malleable metal. It will weld like iron in intenfe heat; but
rejects all acids, except aqua regia, or a mixture of the nitrous and marine acids. When diffolved in thefe, it is eafily precipitated by fal ammoniac; and the fediment is then fufible, and capable of management. It alfo unites readily with moft metals.

Was this extraordinary metal better known to fociety, probably it would be efteemed more than gold.

Mercury is always in a fluid flate ; and will not become a folid and malleable metal till cooled to the 39° below o of Fahrenheit's thermometer; it is then like filver, but more heavy, and a little more bluifh. Though it is as indeftructible by fire as gold and filver, it rifes with lefs heat than will fufe any other metal ; it is therefore eafily diftilled, and feparated from the lead with which it is generally adulterated : but expofed to heat in tall and open veffels, it readily calcines into a red calx, called red precipitate ; which calx may be brought back to its metallic ftate by a ftill greater heat: for as a moderate heat expelled its inherent fire, or phlogifton, from its furface (or qualified it to imbibe vital air), fo when it is confined, a greater heat reftores fire equal to what it had loft, and the metal returns to its original ftate. For though fire drives off the acid from fulphur, and uniting with it and water making vitriolic acid ; that acid, in the character of a gas, and confined in a tube hermetically fealed, will, by long expofure in a fand heat, return to fulphur: fhewing, that fire, though obliged to penetrate glafs, can give to the acid all it wanted, to become what it was at firft.

Mercury attracts water, and is feldom dry enough to be ufed for good barometers, till it has boiled feveral minutes in the tubes of thofe inftruments. Thermometers fhould alfo be made with boiled,
or diffilled quickfilver. Nitric acid attacks mercury, and diffolves it with violence: in this folution a confiderable quantity of nitrous gas is difengaged: and it is faid, that it is neceffary that the acid fhould reduce the metal to the fate of a calx, or oxyd, before it can act upon it ; i. e. that one part of the acid fhould be employed in dijpofing the metal for folution, while the other diffolves it, in proportion as it is oxydated; and that all metals fubjected to the action of vitriolic acid, have their furfaces firft oxydated by the acid, and then diffolved. This double operation, I think, is hard to prove : appearances are in favour of the acid attacking the metal at once. As it is but the calx of mercury that remains in the fluid, after the folution of nitrous acid and mercury has ceafed ; if marine acid be added to that fluid, it will feize the calx, and fall down with it to the bottom, forming with it a cauftic falt, called corrofive fublimute: but if to a folution of metallic mercury the marine acid be added, the compound which falls down is called white precipitate, and is fimilar to a calomel or mercurius dulcis. As the caufticity of metallic falts arifes chiefly from the ftrong tendency which calcined metals have to return to their metallic fiate ; corrofive fublimate, poffelfing this property in an eminent degree, becomes one of the moft active of mineral poifons, by tearing from the ftomach and inteftines the inflammable principle fo neceflary to its reduction or revivification. Cimabar is faid to be the ore of mercury; though cimnabar may be made artificially by a combination of mercury and fulphur, and is the vermillion of the painters. Mercury is often found native, in fmall globules in the earth; and as it eafily amalgamates with gold, filver, lead, tin, birmuth, and zinc, it is alfo found in the character of a palle united with other metals. It is fourteen times as heavy as its bulk of water; and a cubic foot of it weighs 94.9 pounds.

Iron is the moft ufeful to mankind of all metals (except when made into weapons). It is hard, malleable, exceedingly tenacious, ductile, and very light. It requires a moft intenfe heat to fufe it, and is therefore brought into fhape by a lefs heat, and hammering. A wire of ${ }_{\mathrm{T}}{ }^{\frac{1}{r}}$ inch thick will furtain 450 lb . Its ores are various, fometimes like large pebbles, fometimes a foft red greafy pigment; there are whole mountains of iron-ftone; the magnet is an ore of iron ; indeed, there is fcarcely any thing animal, vegetable, or mineral, that does not contain iron ; it is the moft abundant of all minerals. Thefe ores are prepared for fmelting, by being broken into finall pieces, roafted, wafhed, and mixed with limeftone as a flux; bafkets of charcoal and the ore, fo treated, are alternately thrown down a chimney-like furnace, where a prodigious combuftion is provoked at the bottom by two pair of enormous bellows, actuated by a large water-wheel. The ore when fluxed falls to the bottom of the furnace, forming a pond of fluid iron, which can be let out into fand moulds for pigs, pots, \&c. This iron, being far from pure, is carried to the forge, where it receives a white heat, and its impurities are beaten out by huge hammers, or fqueezed out by large rollers; and thus condenfed into bar-iron.

To turn iron into fteel, the pureft and moft malleable is chofen, and bedded in pounded charcoal, in a covered crucible, and kept feveral hours in a ftrong red heat. This is called cementation ; which makes the metal more hard, brittle, and fufible than before; and if ftrongly ignited afterwards, and plunged in cold water, it becomes fit for edge-tools, \&ic. The temper of fieel is judged of by the prifmatic order of colours that appear on its furface, as it is flowly heating, viz. gold colour, purple, violet, deep blue, yellow, and then red; but if it be urged to excefs, all the colours are ex-
pelled together, which makes the white heat, in which ftate it can be welded like iron or platina. Steel is heavier than the iron of which it is made. Muft not this additional weight and additional hardnefs be derived from the charcoal? If charcoal (according to Bergman) be ninety-nine parts in an hundred phlogifon or fire, is it not this fire that made the ore into iron, and that iron into fteel? and what is it but this fixt fire that is expelled in the character of inflammable air, when iron is attacked by the vitriolic acid?-is not the inflammable principle driven out by virtue of a more powerful affinity ?

This metal rufts and corrodes when expofed to the air and moifture; by which it lofes its fire, and tends to return again to an ore: acid vapours facilitate this decompofition in large towns; acting upon iron fomething like the vitriolic acid, expelling the fire, and leaving the calx : for on high mountains, iron fcarcely rufts at all. Ruft may be revived like other calces, by treating it with what contains fire ; for being fteeped in linfeed oil for fome time, it will obey the magnet, and betray other figns of revivification.

Iron feems as if it were one of the moft general products of orgainization; for it is found in vegetables which are merely fupported by water: almoft every mineral fubftance of this globe is coloured with it. It is with juftice confidered as the very foul of the arts. It is the bafis of all black colour:. Ocres and Pruffian blue for painters are derived from iron. It allo $\begin{gathered}\text { urnifhes the art of medicine }\end{gathered}$ with many remedies.

Tin is a white metal, got principally in Cornwall: it is harder than lead; little fonorous; very malleable, though incapable of
being drawn into wire. It can be hammered into leaves but one thoufandth part of an inch in thicknefs, called tin-foil. It melts long before it becomes red-hot; and, in that fate, thin plates of clean iron (previoufly rubbed with fal-ammoniac) dipped in it, become covered with a coat of tin, and are called tin-plates: faucepans, kettles, and many other utenfils, are timed fomething in the fame way. In like manner it unites with, and adheres to, other metals, forming with zinc a much harder and lefs malleable compound, called pewter: lead is alfo ufed, which makes the pewter fofter, and more unwholefome. With copper, tin unites in the crucible, and the compound is bronze, or bell-metal. Seven parts of bifmuth, five of lead, and three of tin, form an alloy that melts in boiling water. Tin in fufion foon acquires a calx on its furface, which being fkimıned off, frefh calx appears; and thefe calces are one tenth heavier than the tin from whence they are made. Thefe calces are revived into tin again when heated, with powdered charcoal, in the fame crucible; or the oxydation is prevented when powdered charcoal, or pitch, or greafe, is thrown over the furface of the molten tin, and prevents the accefs of air. The calx of tin, as well as its finely bruifed ore, is called putty, and ufed for polifhing metals, glafs, \&cc.

This metal is attacked by all the acids, and holds its fire, or inflammable principle, fo loofely, that almoft any of them will difengage it in the character of gas. If tin-foil be dipt in water, and a frong folution of copper in the nitrous acid be poured over it, and then the tin-foil be fuddenly rolled up, and preffed together, a violent ebullition will enfue, that will burft into flame. On examining this effect, when cooled, copper will be found produced, and the tin reduced to a ragged calx. Is not this matter of affinity? Does
not the cafy fufion of tin, in comparifon of copper, indicate that the bafis of copper holds its inflammable principle with ftronger affinity than tin? The bafis of the copper (its calx) is only in the folution; the copper loft its fire in the att of diffolving in the acid, and is, therefore, greedy to feal that principle from any thing that contains it: tin holds that principle with a weak attraction ; and it is torn from it with fuch violence by the calx of copper, as not only to produce the ufual heat in fuch decompofitions, but fo as to break out into actual flame. Hence the tin becomes a calx, and the copper is revived. This calx or oxyd of tin, being furrounded with powdered charcoal in a crucible, and expofed a few minutes to a red heat, becomes tin again.

This metal is the lighteft of all others, being but feven times heavier than its bulk of water.

Lead is heavier than filver, much fofter, very flexible, and incapable of being drawing into wire. It melts before it becomes red in the fire, and calcines eafily, if air pafs over it ; firft turning white, then yellow, and then red: this is minium, or red lead, which is made into wafers; and is a principal ingredient in the fine, denfe, and white glafs, ufed for achromatic telefcopes; by refracting the rays of light more powerfully than the alkaline glaffes. Lead acquires a cruft by expofure to the air, which is a partial oxydation that protects the reft, and therefore, it becomes a lating cover for houfes. It alfo acquires a foft cruft by being expofed to the air, and the fumes of vinegar: this calx, when fcraped from the fheets of lead (coiled up and expofed for that purpofe), is cerufe, or white lead, ufed in oil painting. Cerufe diffolved in concentrated vinegar, affords a cryftallizable falt, called fugar of lead, from its fiweet tafte,
though it is a deadly poifon. Thefe calces are eafily revived by giving them back what they loft in the act of calcination, viz. fire, or any thing that contains it. Hence, if charcoal, oils, fat, or any thing inflammable, be covered in the crucible with the minium, and expofed to a ftrong heat, the calx will return to lead. So, if wafers be burnt in a candle, the calx revives, and drops from the wafers in fmall globules of lead. A ftrong heat vitrifies the calx of lead into litharge, and a ftill ftronger, into glafs, which will run through the crucible like water through a fieve. This metal is eleven times and one-half heavier than its bulk of water.

Copper is a reddifh, hard, founding, malleable metal; capable of being reduced into thin leaves, and drawn into fmall wire. It is procured from ores of various forms and colours; fome in the fhape of brook-pelbbles; fome called peacock, and pigcon-neck ores, from their likenefs to the tail and neek of thefe birds: it is often bedded in hard rocks, or paffes through them in regular veins, or feams. Sometimes a belly of ore (as the miners call it) is found, being a mafs that fills the interior of a mountain. It is firft roafted, to drive off the fulphur with which it is generally united; and broken, forted, and fmelted, in the ufual way. Copper, fo procured, is heated, and rolled into plates for ufe, or goes to market in fimall bars. Polifhed plates of copper expofed to heat, part with their light, or fire, in prifmatic order; red being forced out where the heat is greateft, violet where the leaft, and the other colours playing, as it were, with the vibrations of the fire: copper, however, feems to have the ftrongeft attachment to green light, and parts with it only by force : the flame of the fuel becomes a beatiful green; and in fuch a heat as would melt gold or filver the copper melts, and burns with whitifh green flame; but a violent heat will fublime it
in a metallic fate. All the acids diffolve copper, but the nitrous with the greateft rapidity; much nitrous gas is difengaged, and the folution is of a beautiful blue colour: if a plate of clean iron be immerfed in this folution, it becomes inftantly covered with a fkin of copper. On this property is founded the profitable mode of precipitating copper from the waters iffuing from copper mines, which are gencrally impregnated with the vitriol of copper: bars of iron, placed in ponds of fuch water, not only become covered themfelves with copper to a confiderable thicknefs, but precipitate a great quantity, which is taken from the bottom of the ponds, and fmelted. Is not this alfo matter of affinity? The iron becomes a calx ; and the calx of copper becomes a metal. Does not the copper then commit a robbery on the iron? Does it not, by ftronger affinity, fteal the inflammable principle of the iron, and become, by that acquifition, a metal itfclf: while the iron fo robbed becomes a foft calx, full of holes, without the leaft metallic appearance! Copper becomes oxydated on its furface by long expofure to the air; a coating which protects the reft: this cover is very hard, and is the patin of the antiquarians, by which they fometimes fallacioufly judge of the antiquity of medals and ftatues. Vinegar, when made to act hot or cold on copper, diffolves, or rather corrodes, it ; this corrofion is the verdigris of commerce. The acid of common culinary vegetables, ftanding in proper veffels, performs the fame effect in a degree; and hence the noxious, and even poifonous, confequences that arife from the ufe of copper utenfils. The timning of copper is meant as a protection to victuals, fo expofed, from verdigris; but copper is never completely covered by tin, though it appears fo. This operation is performed by melting the tin in the veffel to be timned : this reffel is firft well cleaned, and has any
weak acid paffed over its furface; the molten tin is then rubbed over its furface with rolled-up old rags.

Copper is ufed for large boilers; to fheath the bottoms of fhips ; and fill for kitchen furniture, notwithftanding the above danger, \&c. The falt of this metal is call blue vitriol.

Sulphur is found moft commonly combined with metals, and often in a fate of purity in nature. It is inftantaneoufly combuftible when it touches an ignited body:-when warmed, it fends forth a weak odour; in rolls, it cracks by the heat of the hand, and a moderate degree of heat melts it. It is often formed by the decompofition of animal and vegetable fubftances, particularly putrifying vegetables. Expofed to a confiderable heat in open veffels under a floping chimney, it fublimes in the chimney, and is called flowers of fulphur ; when fufed and poured into moulds it becomes roll-fulphur. Sulphur cryftallizes in a beautiful manner, if the bottom of the veffel in which it is fufed have an occafional hole that can be opened when the fulphur begins to congeal, and to run out into another veffel. Metals have a ftrong affinity to fulphur; and in an hot ftate, uniting with it, become brittle and fufible. The imperfect metals are generally found united with it in nature, and it is expelled from them by roafting before the metal is finelted. If mixed with nitre in a retort, and heated, the oxygen of the nitre will unite with the fulphur, and both rifing by heat in vapour into a leaden ciftern juft covered with water, the water imbibes the volatile acid and becomes oil of vitriol, or the fulphuric acid. If this acid be expofed to great cold, it concretes in a cryftalline form; and if combined with the mineral alkali it cryftallifes, and is known by the name of Glauber's falt.

Arfenic is a metallic calx, of a glittering whitenefs, like fugar; has an acrid tafte; and when thrown into the fire, or on an hot iron, finells like garlic. This fubftance is attached to moft metals in the mine, is very volatile, and in great abundance ; fo that in working mines, it fiies about, and being breathed by the unhappy miners, deftroys their lungs. Arfenic is too much the inftrument in the hand of wickednefs, or imprudence, for anticipating death, by its likenefs to fugar.

Cobalt, a femi-metal, is of a light grey colour; compact and brittle; difficult of fufion; and refufes to amalgamate with quickfilver: it gives a blue colour to glafs. Arfenic is forced from it by roafting under long crooked chimneys, in which the arfenic lodges, in fufficient abundance to fupply commerce. When the oxyd of cobalt is cleared of its arfenic, it is known by the name of zaffar. This oxyd, fufed with three parts fand, and one of pot-afh, forms blue glafs. This glafs pounded, fifted, and finely ground in mills, forms finalt; which is ufed in the preparation of cloths, laces, linens, muflins, thread, \&c.

Bifmuth is a femi-metal, of a fhining yellowifh-white colour, fomething like lead: it fufes with lefs heat than any other metal, except tin. It is found in various frata in the earth, generally combined with fulphur and arfenic. Nothing more is neceffary in fmelting its ore, but to throw it into the fire, and to have a cavity underneath to receive the femi-metal. The acids attack bifmuth, and form folutions with it, but water precipitates it from all its folutions; and the precipitate, when well wafhed, is known by the name of magiftery of bifmuth, or white paint for the complexion. This figment is eafily converted into a metal by fulphureous vapours,
or animal tranfpirations, and lofes its colour. Pomatum, prepared with this magiftry, turns the hair black.

Antimony is found fometimes native, in maffes of fhining irregular plates; fometimes in white cryflallized fibres; but when combined with fulphur (as is common), it is of a dark bluifh, or grey colour. Reduced to its reguline ftate, it is of a filvery-white colour ; very brittle and fcaly. Soon after ignition it melts, and as the heat increafes, it fublimes in white fumes, which is the calx, or oxyd, of the femi-metal, and is ufed to give an hyacinthine colour to glafs. All the acids diffolve it. Regulus of antimony pulverized, and mixt with twice its weight of corrofive fublimate, and then difilled, produces a thick unctuous matter in the neck of the retort, called butter of antimony : when water is added to this butter, a white calx falls down, called powder of algaroth, a moit violent emetic. Equal quantities of antimony and nitre being projected into a red-hot crucible, a calx and alkali is the refiduc, known by the name of diaphoretic antimony : if a greater quantity of nitre be ufed in the projection, vitriolated tartar is found with the other products. This is the bafis of emetic tartar, the principal ingredient in James's powders, and one of the firft of medicines. Antimonial wine has long been ufed as an emetic. As the calx of antimony may be converted by heat into glafs, and fhaped as fuch, Spanifh white wine, flanding a few hours in fuch a glafs, will become a powerful emetic. But this is a very uncertain medicine ; for if the wine be more or lefs acid, the weather or room hotter or colder, an uncertain quantity will be diffoived from the glafs ; and it is, therefore, precarious and dangerous.

Zinc is a femi-metal, of a bluifh brilliant white colour ; difficult
to be filed, hammered, or otherwife reduced to powder, but may be rolled into plates by the preffure of the flatting-mill. Calamine is the ore of zinc; a fubftance like lead-ore, and called by miners black jack. It is pounded, and, with powdered charcoal, put in large pots, and thefe pots in a furnace, like a common oven. Thefe pots have tubes fixed in their bottoms, that pafs through the bottom of the furnace into a veffel of water. After the tops of the pots are covered, and rammed clofe with clay, a ftrong fire is made around them, that fufes the calamine, which defcends, in globules of zinc, through the tubes into the water. This is called diftillation per defcenfum. Calamine, fufed with copper, forms brafs; and zinc and copper, melted together, makes pinchbeck, and other goldlike metals. Zinc is attacked by the acids, particularly the nitrous and vitriolic: with the firf, it produces nitrous gas; with the fecond, inflammable gas in great abundance. Zinc melts with a fmall degree of heat; but if the fire be ftrongly urged, it fublimes in a calx, like flakes of cotton, flying about the room, and is called philofophic wool. Dropt in grains, or filings, on a hot poker, it will oxydate in the fame beautiful manner.

Manganese is a calx, and of various colours ; in England it is generally black, and of a carious, broken, and rugged figure. It may be made into a metal, mixed with charcoal, and expofed to a violent heat, like other calces. The appearance of manganefe is fo various, that its change of colour by the blow-pipe is almoft the only teft by which to know it ; the colour coming and going as it alternately becomes a metal or a calx. If a globule of microcofmic falt, with a fmall portion of manganefe, be fufed together upon charcoal, with the blow-pipe, the colour will be a deep red. If the fufion be continued, by the blue part of the flame of
the candle, the colour will difappear; but may be revived by foftening the globule with the upper part of the flame. A little nitre added to the next fufion (as nitre calcines metals) reftores the red colour ; but inflammable matter will again difcharge it. We have feen, in various inftances, how charcoal, fat, and other inflammable matters, heated in the crucible with the calces of metals, revive them, and reftore their metallic form and texture ; the above effects are from the fame caufe : hence manganefe is ufed in the glafs-houfe to deftroy the colour of glafs. From the vaft quantity of vital air produced by heat from this calx (fee Lecture on Air), arifes many ufeful and furprifing effects : the bleaching compound has manganefe for its principal ingredient; the oxygenated muriate of pot-afh fulminates by the vital air of manganefe ; and if that which is called black wad be dried and kneaded with linfeed oil, in a little time it will become hot, and burft into flame. is not this alfo matter of affinity? Does not the vital air of the manganefe folicit the inflammable principle of the oil to an union? for no flame can be produced without the union of thefe two ingredients.

Plumbago, or blacklead, is found in many parts of Europe, but moft perfectly in the mountains of Cumberland. Its ufe in pencils need not be mentioned. It bids defiance to fire ; and is, therefore, much ufed in the conftruction of crucibles. It protects iron from ruft; and the bright appearance of fire-grates is from the plumbago, with which they are polifhed.

SECTION VI.

On Vegetable Analyfis.

VEGETABLES and animals are organized bodies, very different from the mineral matters with which we have been hitherto converfant. They unite the powers of mechanifm to thofe of chemiftry, and have an apparatus of tubes and veffels, by which they elaborate, digeft, feparate, and concoct the various juices that pafs through them, in a ftyle of the moft fublime chemiftry.

The organs of vegetables are chiefly tubes, calculated to extract and convey fluid matter from the earth and air, principally water; which, obeying capillary attraction in the firt inftance, is thence raifed and elaborated by the contractions and dilatations of ordinary heat and cold to all parts of the vegetable. The interior bark carries up the principal part of terreftrial and aqueous nutrition; the woody part may be hollow and rotten, while the reft is in vigour, by the good fate of the bark: grafies, and many plants, alfo, are hollow. Earth, confined in tubs, feems undiminifhed by the growth of plants, though the plant increafes in weight every month ; water, air, and light, feem its principal conftituents: but how thefe are transformed into the mucilage, fugar, oil, \&cc. found in analyzing vegetables, we know no more than how bread, rice, flefh, wine, \&c. fhould form the flefh and bones of a human creature! The œconomy of animal and vegetable exiftence is obvioufly frmilar ; and even in matters not very obvious: a thermometer, put in an augre-hole in a tree, will thew that the plant in winter is warmer than the atmofphere by many degrees; that the tree can refift cold
by its moifure not freezing fo foon as the water in its neighbourhood; that plants fhut up their leaves and fleep in the night; betray irritability, fenfibility; that a wounded tree, on a frofty day, when the fun fhines, will bleed freely on its fouth fide, but fhew no figns of fap on the north, \&rc. \&\%c. : but to enter into a detail of this curious fubject, would carry me beyond the plan of this work.

Vegetable Oils. Fat, or expreffed oils, are fqueezed, or bruifed, from the feeds of plants, as linfeed, fweet almonds, nuts, \&c. Effential oils are procured by diftillation. If an aromatic plant be infufed in water, or fpirits, a few hours, and both together committed to the ftill, a fpiritus rector of water and oil comes over into a clofe receiver, that contains the aroma, or odour, of the plant. The effential oil often fwims on the water, and may be feparated from it : a fmall drop of this oil will produce in fpirit of wine the effences called lavender-water, rofe-water, \&c. Fir or pine wood, cut into billets, and burnt in the middle, has a liquor expelled from each end of the billets, which is tar. Sometimes this effential oil is procured by burning the wood in clofe ovens, when the tar runs off through channels made for its conveyance. Tar dephlegmated, or boiled, to drive off any water with which it may be combined, becomes pitch. Pine, or fir, diftilled, produces oil of turpentine, and an acrid phlegm, or water. This and other effential oils inflame with nitrous acid. Camplor is a concrete effential oil.

Soap. Fixt alkali of foda, made more cauftic by quicklime, and then put to olive oil, forms a mixture which, in a few days, will acquire a confiftency, to be put in moulds, and to be dryed for
ufe. An acid will decompofe the foap, by feizing the alkali: and hence hard water, i. e. water that contains felenite, will not lather with foap, becaufe felenite contains vitriolic acid.

Vegetable Salts are found in the afhes of plants. In boiling thofe afhes in water, the falts become diffolved by the water; and the refufe fwims a-top, or finks to the bottom; fo the impregnated water is eafily feparated: this water evaporated, leaves the falts at the bottom of the veffel. Soda is from plants growing on the feacoaft ; they are burnt in holes in the earth, fo as to be in part fufed, and therefore are in irregular lumps. Pot-afb is from the combuftion of wood, and from an evaporation of the fluid which exudes from green wood when burnt to charcoal.

Gums are the mucilage of plants, forced through the bark when the fap is too abundant. We fee little tears in cherry and plumb trees; and the gum-arabic of commerce is fuch an exudation from the acacia in Egypt and Arabia. They differ from refins by not being foluble in oil, alcohol, or fpirit of wine.

Fermentation. Vegetables that abound with the faccharine principle, or fugar, afford by fermentation a fpirituous liquor. Mucilaginous and glutinous principles are alfo found in vegetables: when mucilage is predominant, the product is acid; and when gluten abounds, ammoniac will be produced in the fermentation. But in all cafes the concourfe of air, water, and heat, is neceffary to bring about fermentation.

Sap in plants often produces a plethora, breaking out of itfelf, and fometimes by incifions. In the fpring, the fap in the body of
the vegetable prefents only a flight alteration in the nutritive juices; but in the fummer, the whole is elaborated, all is digefted, and then the fap poffeffes characters very different from thofe it poffeffed in the fpring.

A rainy feafon oppofes the developement of the faccharine principle, as well as the formation of refins and aromatics. A dry feafon is unfriendly to mucilage, but otherwife to refins and aromatics. Cold weather is inimical to all thefe, except mucilage, which is the principle of increafe in the bulk of plants. Hence trees are molt agrceable in their appearance in cold climates.

Ardent fpirit, alcohol, or ordinary firits, can only be got from faccharine vegetables. Sugar-canes afford rum; grapes, brandy. The refufe of the fugar-works, mixed in a pond, or ciftern with water, go into a fate of fpontancous fermentation. When that is over, the liquor is diffilled, and rum is the product. When the faccharine principle appears in ripe grapes, they are preffed, and the juice is received in vats; where, almoft without ftum, or yeaft, it foon goes into a fate of fermentation. The volume of the fluid increafes, becomes turbid and oily, and fixt air floats on its furface. At the end of feveral days, thefe tumultuous motions ceafe; the woody and impure matters fink, and the wine becomes clear, and of a red colour. The wine, in this ftage, grows warm, or otherwife the fermentation languifhes, the faccharine and oily matters are not fufficiently elaborated, and the wine becomes unctuous and fweet. If rainy teafons produce a want in the faccharine body, the wine is weak; and mucilage predominating, caufes it to become four (the fpirituous fermentation being fcarcely perceptible). This defect may be remedied by adding fugar. If the wine be bottled, or
put in clofe veffels, the gaffeous principles are retained, and the wine is brifker. Tartar is neceffary to the vinous fermentation, and it is in proportion to the abundance of the tartar: for wine, deprived of its tartar, ferments no more. Brandy is diftilled from wine, or rather the lees of wine.

Apples contain a juice, which eafily ferments, and becomes cyder ; pears produce perry: and from both, brandy may be diftilled. Good wine is nearly one-fifth brandy, of proof ftrength; and when it is difilled with a flow fire, or the diftillation repeated, fpirit of wine, or alcohol, is produced.

The fruits of ours, and fimilar cold climates, afford little fugar; and hence to make wines from currants, goofeberries, rafpberries, the fap of the birch, maple, \&c. requires much fugar to be added. to the little they naturally contain.

Malt liquor is generally made from barley: this grain contains a tolerable portion of fugar, which has the glutinous part of the grain taken from it, by fteeping in water, then laying it on a heap, and exciting the firf ftage of vegetation, in finall germs, or fprouts. It is then dried on a kiln, and gromnd into a coarfe flour, called malt. This malt is infufed in hot water, in the marih-tub, and the fugar and mucilage become diffolved. This is called the firft wort ; which is again heated, and paffed a fecond time flowly through the malt. The liquor is then boiled with a certain quantity of hops, which communicate a refinous bitter. It is then poured into a cooler; and mixed with yeait, or an acid leven, to accelerate the vinous fermentation. This foon takes place, and continues with warmth and ebullition for many hours ; and before it quite fubfides, the li-
quor is put in barrels, with the bung open for fome time before it be clofed. What then is fermentation? It feems to be the means ordained by nature of feparating the component parts of animal and vegetable bodies, when their vital functions have ceafed; and to diftribute thofe parts to the general mafs of the elements to which they each belong: fending earth to earth; water to water; air to air, \&c. Moifture and warmth are neceffary to this procefs; for very dry fubftances do not eafily go into a fate of fernentation. This curious fyftem of diforganifation is generally divided into three ftages: 1 ft , the vinous, or fpirituous, fermentation ; $2 d$, the acid, or acetous; and, g d, the putrefactive. Animal bodies feem to pafs the two firft ftages; and the firlt only takes place in vegetable bodies that contain faccharine juices. In thefe, a fwelling and commotion firft takes place; in time the groffer parts fubfide, and a clear liquor remains. Wines and malt liquors are ftopt at this fage, by being confined in clofe veffels: but if left expofed to the air, the fpirituous parts evaporate, and they pafs on to the fecond, or acetous ftage, by imbibing vital air, and become vinegar. If this fpontaneous decompofition is fuffered to proceed, putrefaction takes place; the vinegar gradually becomes vifcid and foul; an offenfive air is emitted; volatile alkali flies off; and an earthy fediment fubfides. The remaining liquor is mere water.

The death of plants is fimilar to the death of animals; the functions of both feem to depend on irritability, or the vital principle. When the vital principle ceafes to operate, they are no longer fubject to vital affinity, but to chemical affinity; by which, having loft their vital principle, they do not perifh, but only lofe their organic ftructure; and foon germinate again into other organifed bodies.

To prevent fermentation in vegetable or animal fubfances, is but to change the proportions of their proximate principles, adding a greater quantity of thofe principles that will unite with the bodies, and which are not themfelves liable to fermentation. Hence vitriolic acid prevents wine going further into the vinous or acetous ferment. Animal matters are preferved in fprits of wine, common falt, or any falt. Such animal or vegetable fubfances only are confidered as fermentable, which contain oil, or fugar; for the intefine motion of metals and acids is effervefcence, not fermentation.

SECTION VII.

Of Animal Analyfis.

MATTER, when under the dominion of vitality, eludes the analyfing hand of chemiftry. The vital principle muft abandon its empire before the menftruum, or retort, can be ufed. The mineral kingdom is not governed by an internal force; it is fubject to the action of external powers, fo invariable, that the effect of fire, water, air, \&ic. is conftant, and within the power of calculation. But it is not improbable that the vital principle of animals, or their irritability, is continually communicated to the body by the decompofition of the oxygen part of the air in the lungs, as well as animal heat. Though animal bodies are fubject to the influence of external bodies, that influence can be fo modified and varied by the living principle, that the chemift muft look into the living body itfelf for effects, rather than in his laboratory. Yet in that laboratory he has found what airs are beft to breathe; how to cure
thofe that are noxious; what kind of water and other aliments are moft conducive to health ; and, thence, how to remove the noxious, and felect the ufeful. In various diforders of the animal body, the vital principle feems to abandon the government of the parts affected, and to leave the folids and fluids to the deftructive action of external agents ; in confequence of which they become decompofed; and being deftitute of the living principle, are fubject to chemical analyfis. But when this principle abandons the whole body, the fame caufes which maintained the functions of it, now begin to act upon the body itfelf. The gaftric juice is feparated by glands placed between the membranes which line the ftomach, and from thence it is emitted into the ftomach. This active menftrum is the chemical folvent of food in the ftomach ; it forms it for digeftion, by the lymphatic and lacteal tubes of the fomach and inteftines: and when it has nothing elfe to ač upon, it will attack the flomach itfelf, excite the fenfation of hunger, and even diffolve the ftomach after death. Small hollow balls, pierced full of finall holes, and filled with flefh, bread, \&cc. have been fwallowed, and fuffered for a time to lie in the human fomach, and when drawn up by a thread attached to them, have been always found empty. This could not be by any mechanic motion of the ftomach, for the balls were not injured; nor by fermentation, for neither air nor heat was produced; it muft, therefore, be by the folvent power of the gaftric juice. This juice, however, is different in different animals : when the balls, containing bread, were fwallowed by a kite, or falcon, they were not diffolved, though flefh was; and Aefl was not diffolved by the duck, or turkey.

Blood is that red fluid which circulates in animals by means of the arteries and veins. It fupports life, by fupplying the various
organs with the peculiar juices they demand; and is faid to derive its red colour from the iron it contains; this iron becoming oxydated by the acid of the oxygen part of breathed air : for if the ferum and coagulable lymph be carefully wafhed from the red particles, they will be found to contain no iron by the ftricteit analyfation, while the red globules will be found to confift entirely of that metal. The blood having diftributed its oxygen to the parts of the body it comes in contact with in the courfe of its circulation, becomes of a darker colour in the veins on its return to the heart, and is thence propelled by the heart up to the lungs to become renovated with oxygen air : hence drowned or ftrangled perfons become black for want of that renovation; and it is therefore not remarkable, that if oxygen gas be injected into the lungs of fuch perfons, the blood even after death will change to red. Blood is generated in the ftomach, and fecreted from thence to the heart in the character of milk, where joining the venal blood, they are propelled together up to the lungs, where they imbibe vital air and its heat; become red, as above; and return, in that state, to the left ventricle of the heart. The blood, fo augmented and purified, is now propelled through the arteries to the extremities of the body; and having diftributed its heat and nutrition to the various organs in its paffage, returns by the veins back to the heart a dark-coloured red. To renew this colour from the air in the lungs, and by that decompofition to feize its latent fire, the blood is again forced up to the lungs, \&c. As iron is found in analyfing the blood, it has been fuppofed that it is made into a red oxyd, or calx, by the vital air imbibed by the blood in the lungs. Air, no doubt, is fome way the caufe of its red colour. This humour is, with reafon, confidered as the focus of life; nay, by fome, as being alive itfelf.

Black venal blood expofed to the air becomes red on its furface; but air remaining confined over blood extinguihhes candles, and becomes carbonic: fo breathing through lime-water precipitates the lime. Blood in vacuo turns black ; but turns red again by letting in the air. Thefe facts prove that the vermillion colour of the blood is owing to the pure air which unites with it.

Refpiration eftablifhes a real focus of heat in the lungs: this heat is in proportion to the magnitude of the lungs (cold animals. having but one auricle and one ventricle).

Perfons refpiring vital air, perceive a gentle heat vivify the lungs, and extend from the breaft into all parts of the body: in fhort, the blood ablorbs vital air, even from the atmofphere, which paffing from a gafous ftate to a fluid one, abandons the fire which held it in folution, and in the fate of a gas ; and which becomes (by accompanying the blood) diffufed through the whole body, producing. animal beat. From the greater condenfation of the air in winter, the heat is more confiderable ; and hence northern inhabitants imbibe a heat by refpiration that counterbalances the cold of their. climate: the phænomenon therefore of refpiration is the fame as. that of combuftion. See p. 160.

Blood diffilled on the water-bath, affords phlegm, of a faint fmell, and which eafily putrifies; with greater heat, the product is acid, oil, and ammoniac, tempered with fixt air : a fpongy coal remains in the retort, in which iron and fea-falt are found.

Blood, foon after leaving the veins, feparates into ferum, a yellowgreenith thin fluid; and craffamentum, confifting of red globules. containing much iron.

Fat is a kind of oil, or butter, made folid by an acid, and contained in the cellular membrane. It is a depofit from the redundancy of food (by the wife provifion of nature), to fupply the want thereof. Fat, like oil, is not mifcible with water; it forms foaps with alkali ; and, from the fill, produces an oil and an acid phlegm.

Milk is a mixture of oil, lymph, ferum, and falt (detected by diftillation). The union in this mixture is very weak, therefore eafily deftroyed, and the feparation produces butter, cheefe, and whey. Milk, viewed by the affiffance of a microfcope, appears like an infinite number of opaque globules floating in a tranfparent fluid. Milk is fecreted by peculiar veffels in the female, for the fupport of her young; is very faccharine in the human fpecies; milder and fofter in the cow. When milk is left to fpontaneous decompofition, like vegetable fubftances, it goes through the vinous, acetous, and putrefactive fermentation, though the firft is fcarcely perceptible; yet the Tartars catch it in that fate, and convert it into wine. The ferous and oleaginous parts feparate after ftanding fome time, the cream rifing to the top, and containing the fat fubftance called butter: by agitation, or charning in the air, the fatty particles, ftriking againft each other, ftick together, and feparate from the ferous part with which they were united; which part foon turns four, and contains a peculiar acid. Nilk curdles with any acid; and therefore rennet, which is the infufion of the fomach of a calf in water, coagulates the milk: this pruperty is owing probably to the gaitric juice of the animal. The curd being collected, and the whey fqueczed out, it becomes cheele.

Eggs very much refemble milk; the white differs little from the curd of milk ; it coagulates with heat without lofing weight; and
evidently contains fulphur, by tinging the fpoon with which it is eaten. The yolk, being the food of the chick, is an animalized emulfion, well adapted for that purpofe. Oil, mineral alkali, and fulphur, are detectable in the eggs of birds.

Flefb. The animal mufcle is formed of fibres, rumning lengthwife with the body; they are comected together by the cellular membrane, and enveloped in lymph, jelly, and fat. Their analyfis, by diftillation, affords little information: water, alkaline fluid, empyreumatic oil, ammoniac, and a coal, are the principal product. The digeftor is, therefore, better than the fill ; for in a clofe veffel, half filled with water, over a flow fire, there follows a fucceffive difengagement of the above principles, in the formation of foup. The lymph coagulates by the firft impreffion of the heat, and appears in fcum ; which is taken off. The gelatinous part then becomes difengaged, and diffolving, incorporates with the water. When the water is fufficiently penetrated by heat, flat round drops arife, which, when cold, appear to be fat. As the digeftion proceeds, the mucous extractive part is feparated; the foup now affumes its colour, and peculiar odour and tafte, and falt takes off its infipidity. By this mode of cookery, the whole nutrition of the meat is preferved; its digeftion is more eafy and nourifhing than roafted or boiled meats; for much of their nutrition is evaporated, and fent up the chimney, and the remainder is left hard, and difficult of digeftion.

Skin and Bones. The parts of anmals, whether membranes, tendons, cartilages, liganents, or even the fkin, bones, and horns, contain a mucus that is foluble in water, and known by the names
of jelly, portable foup, glue, fize, \&cc. The analyfis of thefe parts is pretty much the fame as in the laft article.

SECTION VIII.

Cbemical Apparatus.

TO effect the compofition and decompofition of bodies; to feparate the volatile from the more folid parts, \&c. various utenfils are required. For though copper and lead, united by fufion, may be feparated by fufion, becaufe lead will melt firft, and run from the copper; and notwithftanding that the mixture of copper and zinc, called brafs, may be decompounded by heat, as the zinc will affume the vaporous ftate firft ; and that quickfilver can be feparated from gold, water from clay, \&c. by the fame procefs ; yet ftill thefe, and thoufands of chemical operations, require apparatus, which we will now endeavour to give an idea of.

Retort, fig. 4, Plate XV. is of glafs, iron, or earth. Glafs is the moft cleanly; is not liable to be corroded; is impervious to air; and fhews what is going on within. Such a retort, heated in water (called a water-bath), or in fand, contained in an iron veffel (called a fand-heat), is not liable to crack; but feldom can ftand a naked fire.

Alembic, fig. 5, Plate XV. This is a kind of ftill. The fluids to be feparated are put into the log-necked bottle a, called a cucurbit ; this is luted into the head d, which is fixed water-tight in
the refrigeratory m, kept always full of cold water. To the neck, e, of the head, is luted the receiver, or bottle, c, called a matrass; thefe, all together, are called an alembic. When a fire is made in b, the volatile matter in the cucurbit rifes into the head d, and becoming condenfed by the cold water: about it, drops into the matrass c.

Air Furnace, fig. 6, Plate XV. This furnace depends for its great production of heat on the height of its chimney. For the column of air, of which the chimney is a part, will be light in proportion to that height ; and, of courfe, the colder and heavier air will rufh through the fire with proportional violence, to reftore an equilibrium ; and combuftion becomes more rapid and intenfe the more air is decompofed. a is the afh-hole; c, the grate; d, a ftone cover, to be taken off to place crucibles in the coals, or cupels in the current of the flame.

Reverberatory Furnace has the fire beaten down by a dome, a, fig. 7, Plate XV. on the top of the retort d, fo that the retort becomes heated on all fides. Sometimes the dome is filled with coals on all fides of the retort. c is the afh-hole; g, the grate; and m, luted to the retort, is the receiver.

Woulfe's Apparatus, fig. 8, Plate XV. is a method of diffilling, by which the vapours that ufually efcape in the ordinary way are condenfed, or arrefted, in their paffage through water, or other fluids. a is a setort, containing the matter to be diftilled ; b is the recipient; c is a bottle with three necks, half filled with water;-the firft neck has a crane tube luted into it, and its other end into one of the nerks of b; the fecond neck has a tube open at both ends

212 Mijfollancous Obfervations and Experiments. [lec, Iv.

luted into it; and the third contains a crane that is luted into the other three-necked bottle d, which is half filled with an alkaline ley. When all their joints are well luted with lime and white of egg, and the fire put under a, the firft product will rife into b; which, if it be gas, will be forced over the crane e, and through the water in c, which will arreft any fixt air that the gas may contain : the gas, on which the water will not operate, will then pafs from c through the alkaline ley in d, which will arreft any thing acid contained in the gas; the remainder will then pafs through the crane g into an inverted glafs, as fig. 1, Plate XV. The tubes, x and z, are only to prevent the burfing of any part of the apparatus, when the gas is generated with too much rapidity.

A blow-pipe added to thefe, will make a gentlemanly apparatus; and even a tobacco-pipe-head is very ufeful for experiments on a finall fcale.

SECTION IX.

Mifcellaneous Obfervations and Experiments: in Cbemiftry.

1. IF a folution of filver, in the nitrous acid, be expofed to intenfe funfhine, the filver will revive. Is not this becaufe the calx of filver has a ftronger affinity to light than to the nitrous acid?
2. The finelling-bottle may be made with a mixture of quicklime and fal-ammoniac. Explanation. The fal-ammoniac confifts of marine acid (and fometimes the aetrial acid, or fixt air), and the

Lec. Iv.] Mijcellaneous Obfervutions and Experiments. 273 volatile alkali; which alkali is imprifoned by the acid, and totally without fimell : but the aërial acid having a greater affinity to quicklime than the alkati, it becomes forfaken, and mixing with the air, affects the nofe with its pungent fmell.

3d: Spirits, mixed with water, produce heat; mixt with finow, cold ; (difcovered by the thermometer). Explanation. Spirits certainly contain more fpecific fire than water ; therefore, on their mixture, water and fipirits having fo great an affinity, they unite, and the fuperabundant fire becomes expelled from the fpirit, active, and of courfe fenfible, raifing the thermometer. But fnow is ice in a granulated ftate; and fpirits help to liquefy it: ice melts by attracting latent fire from all bodies in contact with it (as formerly proved); and, of courfe, draws a portion of its heat from the thermometer immerfed in it, finks it, and thereby exhibits cold. It is well known that frozen flefh-meat thaws fooner in cold than in warm water : and two cakes of ice in the bottoms of tiwo flat veffels; if one be juft covered with boiling water, and the other with cold, of equal quantity, there will be little or no difference in the time of their thawing; for the ice will foon affimilate the thin fratum of hot water to its own temperature. See page 30.
4. Mixtures giving out heat univerfally decreafe in bulk; and thofe producing cold, will become larger than the fum of their two bulks. Explanation. The firft mixture becomes lefs, by lofing a portion of its latent fire, and, of courfe, that repulfive principle that fet the particles at a diftance. The fecond grows bigger by flealing fire from contiguous bodies, and thereby producing cold in them.

214 Mifcellaneous Obfervations and Experiments. [lec. iv.

5. A piece of phofphorus in a folution of filver, copper, or other metal, foon becomes covered with metallic particles, or revived metal. Is it not the fire, or phlogifton, of the phofphorus that has reftored the calx to its metallic ftate?
6. If fifteen grains of phofphorus be melted in a dram of water, and, when cold, if two ounces of vitriolic acid be put to it, beautiful fire-balls will dart from the mixture; but if oil of turpentine be poured upon it, the whole takes fire. Explanation. Vitriolic acid and water have fo ftrong an affinity, that in uniting, their mutual fire becomes fo difengaged, that the heat is fufficient to ignite the phofphorus. Strong acids feize the bafis of infliammable fubftances, and expelling their fire, caufe heat in fome, and inflammation in effential oils, or other fubftances containing much latent fire.
7. Liquor probatorius is two ounces of quicklime, and one ounce of orpiment, poured into a pint and a half of boiling water, and left to ftand thirty-fix hours: being carefully bottled, a drop or two in a glafs of white or made wine will detect fugar of lead, by a cloud falling to the bottom of the glafs. Explanation. Sugar of lead (a deadly poifon) is a calx of lead, and becomes revived by the fulphur and arfenic of the orpiment.
8. If a thin fmall jar, a, fig. 9, Plate XV. be half filled with good ether ; and the jar c half filled with water, and placed under the receiver z, on an air-pump; when the air is exhaufted, the ether will boil, and the water be frozen. Explanation. Water, and particularly light fpirits, are kept in a ftate of fluidity by the weight or preffure of the atmofphere ; remove the air, and they fly off in
lec. Iv.] Mifcellaneous Obfervations and Experiments. 215
fteam or gas; but in their flight carry off, and render latent, the fire in the neighbouring bodies. Hence the ebullition of the ether, and the ice of the water.

9th. Cloth dipt in a very diluted folution of gold, in aqua regia, and expofed to the fun, will appear like cloth of gold. Explanation. Light and fire being conceived as the fame principle, if fire will revive metals, we alfo find that light will do the fame, particularly when concentrated by a burning lens.
10. Manures act upon land in three ways: ift, Mechanically, by increafing or diminifhing the adhefion of the foil. 2d, Chemically, by diminifhing adhefion by putrefaction; by decompofing metallic or earthy falts; by increafing or diminifhing the capacity of the foil to retain water; by promoting the putrefaction of dead or 'dying vegetables; and by affording the falts and gafes, which are the pabulum of vegetables. 3d, Phyfiologically, by acting as ftimuli on the living fibre of the plant ; killing, by too ftrong a ftimulus, the weak and languid fibre, and exciting the ftronger to ftronger action.
11. Dried earth diftilled, gives inflammable and fixt air in proportion to its fertility.
12. The leaves of any vegetable being boiled in water almoft to drynefs, will impregnate that remaining water with nitrous falt; fo that brown paper being foaked in it, and then dried, the paper will be found to be very good quick-match, will fire gun-powder; and decrepitate in the fire like real nitre. Explanation. As the nitrous falt is generated in places abounding with filth, lime, dung,

256 Mifcellaneous Obfervations and Experimeents. [Lrc. iv.

 \&c. the vegctables of richly manured earth make the ftrongeit ley; and therefore that it is probable the manure fupplies the greateft part of the nitre of vegetables.13. Limeftone, chalk, marble, \&x. it is faid, will not calcine into lime when inclofed in any thing that keeps the air from them. Explanation. Becaufe in a clofe veffel their fixt air cannot efcape, and the caufticity of lime is from its want of fixt air, and the ftrong affinitive effort it makes to acquire it from fubftances that contain it. Hence, though lime contains no vegetable nutrition, yet, by tearing fixt air from all animal and vegetable fubftances that come in its way, thefe fubftances become diffolved, and, mixing with other pabula, form the real nourifhment of plants.
14. A filk handkerchief held in the middle of the flame of an iron furnace, will not burn. Explanation. Becaufe air cannot get to the centre; it only has accefs to the outfide of the flame, and combuftion will not take place without air.
15. A ftrong folution of Epfom, or Glauiber falt, in warm water, well corked in a bottle, will remain fluid; but on drawing the cork, the falts inftantly cryftallize, and become folid. Explanation. The falts and water are both in an expanded ftate, by heat, when firft corked; and while no air has accefs to them, muft continue fo: but the inftant they become liable to the preffure of the atmof phere (when the bottle is opened, the water being only fufficient for the water of cryftallization), the particles of falt are forced within the fphere of each other's attraction, and inftantly unite.
16. If feveral falts are diffolved together in the fame water,
lect. iv. I Mifcellaneous Obfervations and Experiments. 217 when they cryftallize, each particle will find its own kind, by a fort of innate polarity ; i. e. diffolve half a pound of blue vitriol, and an equal weight of picked cryftals of nitre, in feparate quantities of boiling water; filter them together, while hot, into a flat bowl: when the water has evaporated a little, the cryftals will fhoot, the vitriol all together in blue, and the nitre in white cryftals, the fame as before they were diffolved.
17. Eight parts of bifmuth, five of tin, three of lead, melted together, and a little quickfilver put to them while in fufion, make a metal that will melt in a handkerchief a few inches above a candle; and expands with heat more than any other metal.
18. That unfeen aroma that tranfpires from plants, and is only fenfible to the nofe, conftitutes the volatile character of the eflential oils, and is of the nature of gas, from its finenefs and invifibility. The flighteft heat expels it from plants, and coolnefs condenfes it, rendering it more fenfible; and hence the odour of plants is moft fenfible morning and evening. This aura is fo fubtile, that though its emiffion from wood, leaves, flowers, \&c. is continual, there is no fenfible lofs of weight. Yet it may be extracted and imprifoned, fo as to conftitute various effences. It is foluble in water, alcohol, oils, \&ic. and the infufions being diftilled with a gentle heat, the aroma of lavender, of rofes, of pimento, \&c. may be preferved. This is the union of folar light with the fineft particles of terreitial matter; or rather it may be faid to be light itfelf, made fenfible to the nole as well as to the eyes; for it is in the greatelt abundance in warm climates, and is not produced in cold coumtries, but where vegetables are fheltered from cold, and expofed to the fun.

218 Mifcellaneous Obfervations and Experiments. [ıec. iv.
19. If powdered charcoal be ftrewed on ftrong nitric acid, a little heated, it will take fire. Is not the latent and concentrated fire of the charcoal difengaged by the acid feizing its bafe (the afhes of charcoal being an alkali)?
20. The Semen lycodii, or witch meal, ufed in theatres to reprefent lightning, is almoft impoffible to be wet. This powder, ftrewed on the furface of water, not only fwims without being wet, but prevents other bodies from being fo, that plunge into water through it; fo that a piece of money may be taken from the bottom of a bafon of water without wetting the hand, as the meal defcends with it. Explanation. May not this property arife from the great quantity of fire this very inflammable powder contains, which, forming a repulfive atmofphere round each particle, may pufh the particles of water fo, as not to touch them?
21. A phial, nearly full of water, was hermetically fealed, and exactly weighed : the water was then frozen; in which ftate it was weighed again, and found lighter than when the water was fluid. Was not this by the contraction of the glafs?
22. Extreme heat, and extreme cold, produce the fame fenfation. A Papin's digeftor burft in the operator's face, and the fenfation was that of extreme cold.
23. A green ink, that appears and difappears by alternate heat and cold, is a folution of pounded zaffire in aqua regia, ftanding twenty-four hours, poured clear off, and mixed with an equal quantity of water : this kept in a phial, with a glafs ftopple, is ready to make the leaves of trees, and verdure of the ground, a

sec. iv.] Mifcellaneous Obfervations and Experiments. 219

fummer or winter landfcape. For if the picture be held near the fire (like the effect of the fun), the trees will become covered with leaves, and the ground with grafs: but if taken into the cold, the verdure difappears, the trees lofe their leaves, and the landfcape is a winter fcenc. In like manner, if the ink is ufed in writing, the paper will feem a blank till it is held near the fire, when the writing will appear of a beautiful green : taken into the air, at a diffance, and again it becomes invifible : alternately appearing and difappearing in this way for numberlefs times. Explanation. This ink is a folution of a green falt, that has fuch an affinity to water, that it can, when dry, attract a fufficient quantity of water from the air to become fluid, or deliquefcent : when this water is expelled by heat, the falt appears ; but it will foon acquire from the air a fufficiency of water to become again a folution, and, of courle, invifible. Vitriolic acid, mixed with three times its quantity of pure water, is an ink that is invifible on paper when cool, and becomes black when warmed.
24. Sublimate of mercury, diffolved in hot water to faturation, cryftallizes as it cools, like flakes of fnow ; and is capable (like the laft experiment) of perpetual repetition. Explanation. All melted fubftances may be faid to be diffolved in fire ; or as fire repels the particles of matter to a diftance, it renders the capacity of fluids to receive foreign matter greater: therefore folids diffolve in hot menftruums eafier than in cold. But as in this cafe, where the fluid is fuperfaturated with the falt; in cooling the fluid contracts, the falts affuming the water of cryftallization, concrete, and defcend in little affemblages.
25. If fhot and mercury be agitated together, in air, in a bottle,

220 Mijcellaneous Obfervations and Experiments. [lec. iv. and the neck be immerfed in water, the water will rife one-fourth in the bottle; if vital air be in the bottle, the greateft part of the air will difappear. Explanation. The agitation in air reduces the metals, in a degree, to a calx, or oxyd, which imbibes the vital part of the air.
26. A fympathetic ink is made by infufing one ounce of orpiment and two ounces of quicklime in clear water, and in an earthen pot, for twenty-four hours : this is called the firft water. The writing ink muft be one fourth of an ounce of the litharge of filver, boiled a quarter of an hour in a quart of diftilled vinegar: writing with this is invifible; but wiped over with a fponge wet in the firft water, the writing appears like that with common ink. To make this ink penetrate through the leaves of a thick book, or even through a brick wall, red lead muft be diffolved in the diftilled vinegar. Writing with this on the title-page of a book, and wetting the laft page with the firft water; in an hour this water will penetrate many hundred pages without marking them, and revive the ink on the title-page! Explanation. So great is the tendency of a calx to be reduced to its metallic ftate, that it will attract phlogifton, or fire, through the moft feemingly impenetrable fubftances. In this cafe, the calx of lead becomes revived by the fulphur and arfenic of the orpiment.
27. In burning a pound of alcohol, more than a pound of water is produced. Let $a b$ reprefent an Argand's lamp, fig. 10, Plate XV . with the alcohol in a, and the flame under the tube c, which tube is continued in a long worm through the refrigeratory d, filled with cold water. Now, while fixteen ounces of alcohol is burnt out of a, feventeen ounces of water has dropped into the

lec. Iv.] Mijcellaneous Obfervations and Experiments.

bottle e. Explanation. This water, we are told, is generated by the combuftion of the alcohol. Here again am I under the painful neceffity of fetting up my opinion in oppofition to that of one of the moft candid, ingenious, and laborious chemifts perhaps that ever lived. If the caufe of truth did not fortify me againft the diffidence I feel in differing from fo great a name, I Thould fink under the prefumption. In fhort, I think it is the decompofed water that exifted previoufly in that air confumed by the lamp. The quantity of heat produced by this lamp, when trimmed with oil, is great ; but the heat is intenfe when fpirit of wine, or alcohol, is ufed; the quantity of air confumed by this lamp is, therefore, prodigious; and, of courfe, the quantity of water that muft be detached from it: this decompofition of water muft alfo be much increafed by the great draught of air at the bottom of the tube c, which air will be deftroyed by the flame, while the water it contained will fly up in fteam, and be condenfed into water again, by the cold worm, down which it defcends into the bottle e. That water is in a fate of folution in the atmofphere, is proveable by numberlefs experiments; as well as that air is deftroyed by combuftion : is it any way extraordinary that a lamp fo long, and fo intenfely heated, fhould confume as much air as would hold feventeen ounces of water in a ftate of folution?
28. Iron, in a white heat, thruft into a roll of brimftone, drops in round, black, friated globules, that are exactly pyrites. Explanation. Iron has the ftrongeft affinity to the principle of inflammability; and fulphur contains that principle in great abundance; they form an union ; and pyrites confifts of fulphur and iron.
29. While fire feparates the particles of bodies, and diminifhes

222 Mifcellaneous ObServations and Experiments. [lec. Iv.

their attraction for each other; it proportionably augments their attraction for contiguous bodies, by forcing the particles towards the adjacent body.
30. Ice melts in a heat of 40°, Fahrenheit's thermometer, as faft as in 212°, being the heat at which water boils: and water grows fpecifically lighter in cooling from $4,0^{\circ}$ to 32°, the freezing point. See Leeture I.
31. When attraction (in due temperature) prevails in bodies, they are generally in a folid ftate; when fire prevails, they are in a gafous ftate: fo the liquid feems to be the medium between the two ftates.
32. It is probable that all the fubftances we call earths are but metallic oxyds, irreducible by any hitherto known procefs: and even that the German idea, that chalk, kneaded into a ball with linfeed oil, and expofed to a ftrong fire, may become a metal, is not groundlefs.
33. To form a curious impending metallic tree, of the revived calx of lead. Diffolve three or four ounces of the fugar of lead in a pint of boiling water; fhake it at intervals, and in the courfe of the day filter it through three or four folds of filtering paper; and if not clear, repeat the filter through frefh paper: put the liquor in a wide-mouthed tall phial, and hang from its cork a piece of zinc, about the fize of an hazle-nut, fo that it may be juft covered with the liquor. In a few days, a beautiful tree will have fprung downward from the zinc. Explanation. Zinc abounds with fire, or the principle of inflammability: it produces, with diluted vitriolic
iec. Iv.] Mifcellaneous Obfervations and Experiments. 223 acid, more inflammable air than any other metal. Sugar of lead is a calx of lead, caufed by the corrofion of vinegar ; this falt is diffolved in diftilled vinegar, which, when evaporated, leaves the calx to fhoot into long but weak cryftals, of a fweet tafte, and therefore called fugar of lead. This calx is revived by the inflammable principle of the zinc in fhining leaves; while the outfide of the zinc becomes itfelf a calx, having loft its metallic fplendor and cohefion.
34. To revive limeftone from its fate of quicklime. In burning, the limeftone lofes two of its conflituent principles, viz. its water, and its fixt air. The water it will regain by expofure ; for it will attract a fufficiency from the air about it, and let go its acquired fire. But it wants fixt air to become the fame fort of limefone it came out of the quarry ; this, the human lungs can give to it ; for, if a fpoonful of lime-water be put in a bent fyphon-like glafs tube, and the breath blown through it, the fluid will become muddy ; the ftone will be feen forming at the bottom of the liquor, which ftone will effervefce with acids, and have every other quality it poffeffed in the quarry. For a portion of fixt air is thrown out of the lungs at every expiration. Fixt air is fo powerful an enemy of fire, that if a train of gunpowder leads into the famous Grotto del Cano near Naples, it is inftantly extinguilhed. See Grotto.

(225)

LECTURE V.

ON THE ATMOSPHERE.

Mechanical Properties of Air.

T
HE atmofphere is a thin fluid that furrounds our globe on all fides, like an immenfe ocean. We call it air: and it has the properties of groffer fluids ; by refifting the motion of bodies ; by fuftaining floating bodies; by moving towards thofe parts that afford it the leaft refinance; and by excluding other bodies from the place it poffeffes. The air is neceffary not only to the comfort and convenience of man, but even to his very exiftence, as well as to that of all other animals. Without the atmofphere neither dew nor rain could moiften the earth; nor could the fun impart his light to it. Yet is it principally made up of heterogeneous matter exhaled from the earth; a fluid in which the finer matter of all fublunary bodies is copioufly floating. It is a vaft laboratory, in which nature brings about an immenife analyfis; folutions, precipitations, and combinations. It is a grand receiver, in which all the attenuated and volatilized productions of terreftrial bodies are contained, mingled, agitated, combined, and feparated. It is a chaos, an indeterminate mixture of mineral vapours, animal and vegetable moleculw, feeds,
eggs, fire, water, light, metcors, \&cc. Perhaps it is the fineft and moft volatile parts of terreftrial matter diffolved in light or fire. About one third of its general mafs is of a purer nature than the reft, and is called oxygen air or gas, and is that part which fupports animal life and flame, and is the principle of acidity. The other two thirds, when feparated from the oxygen part, will neither fupport life nor flame, is of a noxious nature, and therefore called azotic gas ; and is, when united to different bafes, the principle of alkalis. Therefore the atmofphere is a refervoir of the acid and alkaline principles, though neither acid nor alkaline itfelf. It is an elaftic fluid, capable of occupying a larger fpace than it naturally poffeffes; and alfo of being condenfed, or fqueezed into a lefs fpace than it naturally poffeffes: and hence we find, that its particles repel each other; that this repellency, or elaftic property, is occafioned by latent fire, or caloric (in the language of modern chemiftry), diffufed through, or rather united with it; and therefore that its particles do not touch each other, nor can be brought into contact by any mechanical force, or the moft intenfe degree of cold. To produce an idea of this repellency, fuppofe fig. 8, Plate XVI. a circle of particles of air, and the particle e a particle of fire with repellent rays, pufhing the particles of air to a diftance. The pref. fure of thofe particles towards one another, by means of their gravity towards the earth, balances the repulfive power of fire in common; but by an acceffion of active fire (that is, of heat), the power of the particle e is increafed, and the furrounding particles of air will be pufhed to a greater diftance.

1. This is better illuftrated by a tight bound bladder, half filled with air, held before a fire, when in a few minutes the bladder will be fo inflated as to burft.

LEC. v.]

2. If a bladder, full blown, have great weights laid upon it, it will be found to occupy lefs fpace than it did before the weights were laid upon it. In the firft cafe, the repulfive power of fire had the fuperiority: in the latter cafe, its rays were mechanically preffed nearer the centre of each particle, and the particles of air brought alfo nearer together.
3. Into the bent tube 0 , fig. 20 , Plate XVI. (fhut at c and open at n), I pour a little quickfilver (juft enough to cover its bottom); then will the air in each leg be of the fame denfity : but if I pour in a little more at n, its weight will condenfe, or fqueeze, the air in the leg $c o$ into lefs compafs: but if I fill the $\operatorname{leg} n$ up to s, the air, which before occupied the fpace oc, will now only occupy the fpace $r c$; being diminifhed inverfely as the weight; i. e. diminifhed as the weight is increafed': for a double force preffes the air into half the fpace ; a triple force reduces it into a third of the fpace. Before we begin to make experiments on the air, it will be neceffary that the principal engine by which thofe experiments are made fhould be explained:-

The Air-pump. - The air-pump is a machine for extracting the air out of veffels, or receivers (as they are called), and is of various conftruction. It generally confifts of one or two barrels or cylinders of brafs, fo fixed that piftons, or air-tight plugs, can work in them by rods paffing through collars of leathers in the covers of the barrels; thefe rods and piftons are moved up and down the barrels aiternately, by rack-work, or tooth and pinion. The plate of the pump is fixed on a ftage clofe to the top of the barrels, and from its centre paffes a tube to the bottom of the barrels, where there are valves that will fuffer the air from the receiver to pafs inte the barrels, but
which fhut of themfelves when the air endeavours to return. Thefevalves are but a piece of wet bladder or oil-fkin tied over a fmall hole, which hole fhould open upwards that the valves may fhut by their own weight. There are fimilar valves to each barrel on the cover of the barrels. If the plate of the pump be very even, a little bees-wax fimeared on it will prevent any air from getting into the receiver from without; if not, a wet leather is placed on the plate. When an even-bottomed receiver is then placed on the plate, and one of the piftons drawn from the bottom of its barrel to the top, the air above it will be forced through the valve in the cover, and a vacuum will be formed below it : to fupply the vacuum the air in the receiver will (by its elaftic quality) rufh into the barrel through the valve at its bottom ; the valve will then fhut, and prevent the return of the air. There are alfo valves in the piftons, opening upwards; fo when the pifton defcends from the top of the barrel, its valve is forced open by the air below, and at the next ftroke is forced out of the barrel through the valve at its top. This operation is continued till the air in the receiver becomes too weak to open the valves, and then the exhauftion is carried as far as the pump is capable, fhewing that a perfect vacuum is never made by the air-pump. The degree of exhauftion is fometimes afcertained by a barometer tube being fcrewed into the pump plate, whofe lower end opens in a bafon of quickfilver ; and fometimes by a fhort glafs tube filled with quickfilver, and inverted in a cup of the fame : this placed under the receiver will indicate the quantity of exhauftion by the approach of the tube towards emptinefs.
2. I inclofe a bladder, half filled with air, with its neck clofed, in a receiver, on the plate of an air-pump; it remains flaccid, becaufe the air within and without the bladder is of the fame denfity: but
when by the pump I draw the air from the receiver, and of courle from the outfide of the bladder, the air within, affuming its fpring, inflates the bladder, as if full blown. See fig. 2, Plate XVI.
3. If an egg be divided in the middle, and its contents poured out of the thick end; if that fhell be put under a finall receiver on the air-pump, and the air exhaufted, the film, or fkin, of the fhell will fwell, by the expanfion of the air under it, and make the egg, appear as if it were become whole.

From thefe caufes we underftand why the air grows from a clofe and denfe ftate, near the furface of the earth, gradually thimer and rarer, till, at a valt height, it may be conceived to degenerate almoft into nothing. Conceive, in fleeces of wool piled upon one another, how the loweft may be compreffed by thofe which lie upon it, how the next fleece will be lefs preffed, the next lefs than that, \&xc. \&cc.; and you will have a tolerably expreffive picture of the progreffive thinnefs of the air as we afcend in it. The difficulty of breathing on high mountains, the oppreffion of the lungs in the afcent, and the fall of the quickfilver in the barometer, all indicate its increafing lightnefs; and that its weight on the furface of the earth is occafioned by the weight and denfity of that air which lies upon it.

1. If any height of the atmofphere be divided into a number of equal parts, as s.r, fig. 18, Plate XVI. the preffure at 1 will be lefs than at s; and lefs at 2 than $1, \& c$. ; increafing in the afcent by an arithmetical feries, as $1,2,3,4, \& c$. But the defcent of the quickfilver in the barometer will be in a gecmetrical feries. So that the afcent into the atmofphere is arithmetical, while the
fall of the mercury is geometrical: by which is calculated the barometrical method of finding the heights of mountains, \&c. Thus at

Miles.

Upon an average, and without an allowance for a fmall variation which the difference of temperature makes between the top and bottom of a mountain, about fixteen fathom is allowed for the fall of one tenth of an inch of the quickfilver in the barometer. So that if the quickfilver defcends three tenths in afcending a hill, it will be about forty-eight fathoms in perpendicular height.

This progreffive rarity of the air arifes from its gravity being, in fome meafure, counteracted by repulfion; for certainly this ocean of air is held faft to the globe by the power of gravity, as well as the moft denfe body, as may be proved by numberlefs experiments. It is true, I feel no weight on my hand when I hold it out in this fluid; becaufe the preflure under and above my hand is equal : but if I lay my hand on a hollow cylinder of glafs, placed on the plate of an air-pump, and exhaut the air out of the cylinder, I become immediately confcious of fomething that preffes my hand fo forcibly to the glafs, that I camot releafe it. The prop is now gone; I have no pretfure under my hand; a column of air, whofe bafe is the fize
of the cylinder, and whofe height is about forty-five miles, preffes down my hand by its weight, and I muft let in the air under my hand, with a ftop-cock, before it will be releafed.

In this experiment the hand undergoes a double fenfation; bcfides being preffed againft the top of the glafs, its flefh is forced into the glafs, by the fpring of the air within the hand: for, though air may be faid to lie latent, when it is a conftituent part of our bodies; it inftantly becomes active, when a vacuum, or a rarity, takes place on any part of the body, and forces out the fkin, like a blown bladder.
2. I place a fmall receiver over the hole in the pump-plate; it is removeable at pleafure, becaufe the mafs of air under it is of the fame denfity as that which furrounds it. I now extract the air, and the receiver becomes fo fixed to the plate, that I can lift the whole pump by it. What has fixt it?-A column of air, whofe bafe is the fize of the bottom of the glafs, and whofe height is that of the atmofphere. This column preffes the glafs againft the plate, and the air under the plate preffes the plate againft the glafs; fo that they are held together by a mechanical force, as if I preffed the plate with one hand, and the glafs with the other.
3. I weigh an empty Florence flafk, capable of holding a wine quart, on a nice balance ; the brafs cap, cemented on its neck, has a valve of wet bladder, opening outward, fo as to let air out, but to prevent any getting in. This flafk, fcrewed on the air-pump, and exhaufted, is then returned to the balance, and will be found to have loft about feventeen grains of its firft weight ; this, then, is the weight of a quart of air on the furface of the earth in our lati-
tude: but it is heavier near the poles, and lighter near the equator, agreeable to what was proved in a former Lecture. This experiment is more correctly made by weighing the flafk in water inftead of air.
4. I immerfe the neck of an empty bolt-head in a tumblerful of water, and place both under a receiver on the pump-plate. On exhaufting, the air rufhes from the bolt-head through the water : for when the air in the receiver becomes rarefied, the air in the bolt-head rufhes through the water, to refore an equilibrium, thereby making vifible the expanfive property of the air. But now ten thoufand bubbles of air appear in the water (air that was previounly diffolved in the water); for, as the weight of the atmofphere is taken off from the furface of the water by the exhauftion, there is little obftruction formed to the repulfion which fwells fimall affemblages of air fo as to make them vifible, and rife with ebullition to the furface of the water. This is one proof that water is a menftruum for air, and diffolves it. If then the air be let into the receiver, its preffure on the water will force the greateft part of the water up into the bolt-head. A bubble of air will probably remain in the top of the bolt-head; but as the water has had moft of its air extracted, it will, in a few hours, feize the bubble in the bolt-head, and abforb it: another proof that water imbibes air. Fig. 5, Plate XVI.
5. Why are receivers not broken by this preffure?-Becaufe of their globular figure, which preferits an arch againft it in every direction. But take a fquare thin bottle, with a valve opening outwardly on its neck, and place it under a receiver on the pump, and exhauft the air (for by its fpring it will come ont of the bottle as
well as the receiver) ; if, then, the air be let in fuddenly upon the bottle, the valve will fhut, and the bottle will be broken, with a loud report, by the preffure of the air on its outlide. Fig. 4, Plate XVI.
6. Having fhewn that air is contained in a diffolved fate in the pores of water, let us try if we cannot detect water in the pores of air. I fcrew a ftop-cock into the pump-plate, c, fig. 16, Plate XVI. and, on its other end, fcrew the brafs plate d; on this plate I place the tall receiver r, and exhauft or draw out the air, as before. At the firft ftroke of the pump a dim cloud appears in the receiver, and falls in a regular thower on the pump-plate. Is not this the water previoufly diffolved in the air within the recciver, which, having loft its menftruum and fupport, coalefces and falls? Some are of opinion that this arifes from the wet leather, generally' put between the receiver and the plate: but when the air is excluded by wax, or the even furfaces of the glafs and plate without any interpofing matter, the precipitation of water fill appears. If the fop-cock be now fhut, and unfcrewed from the pump-plate, the glafs, the plate, and ftop-cock, will all be fixed together by the preffure of the atmofphere. Immerfe the ftop-cock in a bafon of water, and on opening it, a beautiful fountain will inftantly play to the top of the receiver, and continue boiling up after the fmall pipe e is covered, till the receiver is nearly full of water. This pleafing effert is producel by thie preflure of the atmofiphere upon the water in the bafon; for all fluids incline towards that fide which affords them the leaft refifance. Rivers run towards the fea, becaufe they are lefs refifted on that fide than towards their fource. Water is forced into the tall receiver, becaufe there is nothing in it to refitt the preffure on the water; for we never commit thefe outrages
upon Nature, but fhe makes ftrong efforts to reftore a level or equilibrium. But the grand intention, in this experiment, is to prove the air a menftruum or diffolver of water ; and that the two fluids mutually imbibe, and enter into combination with, each other. I leave water in a veffel expofed to the air: in time it all difappears. What is gone with it? Believe not that it is annihilated or deftroyed : nothing in nature is thus deftroyed, or created; the original particles of matter remain unhurt as they came out of the hands of their great Maker ; they are perpetually forming new combinations, uniting, diffolving, precipitating, and to our grofs fenfes feem to change; but experiment informs us they are immutable. Where then is the water ? - Abforbed, foaked up, diffolved in the air ; and, in due time, will be precipitated back on the earth in the character of rain, hail, or fnow. This folution is moft rapid when water is projected into the air in the character of fteam ; for fteam is almoft tangible, iffuing from the fpout of a tea-kettle, but is loft before it has got a yard from it. Where? - In the atmofphere. For in that attenuated fate (its particles feparated by fire) it unites with air almoft infantaneoufly. When water, in union with fire, affumes the character of vapour, the fire is held in a latent fate, quite infenfible, having loft its power of burning, and of giving light. But when fire quits its latent ftate (how long foever it may have laid dormant and infenfible), it always refumes its proper qualities and character, and affects the fenfe of feeling and the thermometer, as if it had never been latent. In lakes, rivers, on the ground, \&c. evaporation is very flow, except affifted by heat; for heat feparating the particles of water, or, perhaps, forming them into hollow fpherules, they become fpecifically as light as air, rife into, and chemically unite with it, making one homogeneous fluid. Becaufe evaporation takes place in vacuo, as well as in air, fome object to this doc-
trine ; for certainly, if a drop of water be allowed to rife through the quickfilver of a barometer to its top, and be there when the thermometer is even as low as 57 , the drop in its evaporation will deprefs the quickfilver half an inch. But how is the doctrine hurt by this? Is the earth at any time fo devoid of fire, that there is not enough which will attach itfelf to water, nay, even to ice? for ice will evaporate. If fire, in its latent or active ftate, or in the character of electricity, attaches itfelf to any kind of matter, it repels the particles of that matter, fo as to make them occupy a larger fpace; as has been formerly proved. Its union with water forms no exception to this rule, whether it forms it into fmall globules ; carries it up by making it fpecifically lighter; or becomes the medium by which air and water chemically unite. The particles of water, united with fire, no doubt will repel each other in vacuo as well as in air, fo as to fill a fpace devoid of air. That heat increafes the folvent qualities of fluid is evident, from the greater quantity of falt, fugar, tea, \&c. that may be diffolved in hot than in cold water: for fire, in that cafe, is a part of the menftruum. The fea is more falt in the torrid than in the other zones; for the air will feparate frefh water from the furface of a falt fea, as water, in diftillation, will rife, with a fmall heat, fooner than falt: hence fea water comes over frefh in a ftill, leaving the falt behind it. Evaporation is alfo in proportion to the quantity of furface: if two veffels, one twice the furface of the other (both being filled with water), be equally expofed to the air, the larger veffel will lofe twice the quantity of the other in the fame time, though the quantity of water in each was equal. Hence woody countries (from quantity of furface) produce more rain, than where the woods are cut down. Cultivation increafing the earth's furface by plants, leaves, \&cc. increafes alfo the quantity of rain. The mouth of a bell-glafs, of
about twenty fquare inches, was placed on a new-mown grafs plot, in very dry weather; its infide was foon covered with vapours, which were wiped from it every quarter of an hour, by a piece of muflin, previoufly weighed. After every wiping, the muflin was weighed, and fix grains of water were collected every quarter of an hour. A fquare yard of coarfe cloth was wet, and then expofed to a warm fun ; it loft eight ounces of its weight in an hour. From thefe experiments it is eafy to reckon that 1600 gallons of water would be raifed from an acre of ground in twelve hours! Need we be furprifed at the quantity of rain that falls? or at the fize of the imnumerable rivers that carry back that furplus to the fea, that is not wanted for the fupport of animal and vegetable life, when a cubic foot of atmofpheric air is foumd capable of holding twelve grains of water in a ftate of folution?

In the months of March and April, a wet cloth, expofed to the air, will dry in much lefs time than in the hot weather of July and Auguft. Why?-By the cold of winter, more rain falls than in fummer: the air in fpring is, therefore, lefs faturated with water than at any other time of the year ; and, of courfe, more fufceptible of carrying it off from any thing that contains it. Hence, in look-. ing horizontally through a telefcope at that time of the year, or on any hot day, the air feems in a quivering or undulating motion; but this appearance is not feen higher in the atmofphere. This we conceive to be air and water in the act of uniting; for near the earth they are not fo intimately mixed but that they break the rays of light differently, and occafion this tremulous motion *. If

[^9]this heat and undulation take place in the latter part of the day, and the cold, after funfet, feizes thefe vapours, before they are perfectly diffolved in the air, then they fall back to the earth, forming mifts and fogs in low grounds; the dews of the morning ; and the hoar frofts of winter. Vapour rifing in fuch microfcopic globules, as fome reprefent, cannot refract or break the rays of light like a drop of rain; and, therefore, they make no rainbows, but only thofe undulations.

Vapour made by the breathing of large companies, is condenfed on the fides of decanters filled with cold water; and on the infide of glafs windows in winter, the vapour freezing, fhews the polarity of ice in tree-like cryftals, and beautiful foliage.

Stone pavements, walls of houfes, wainfcots, \&c. in very cold weather, are deprived of a part of their heat: when warmer weather returns, fire enters thefe bodies, to reftore an equilibrium of temperature, and leaves the vapours with which it was united on their outfides.

Evaporation is found to be in our climate about four times as much from the vernal to the autumnal equinox, as from the autumnal to the vernal. For heat facilitates all folutions. The greater the difference between the temperature of the air and the evaporating furface, the greater the evaporation; for if the air be colder than the evaporating furface, there will be fcarcely any evaporation at all.
2. The degree of cold produced by evaporation is much greater when the air is warmer than the evaporating furface, than that
cold which is produced when the evaporating furface is the warmer of the two ; for vapour is dilated in proportion to the electricity it abforbs ; and hence it is coldeft in an exhaufted receiver, where it dilates moft. Warm winds, therefore, as the firocco, harmatan, \&ic. are more drying than other winds.
9. Cold is increafed by currents of air, or winds ; for unfaturated air flowing conftantly over the evaporating furface, and coming in contract with it, increafes evaporation, and, of courfe, cold. Hence calm days are the hotteft.
4. In winter, the earth at eighteen inches depth is warmer than the air ; in fummer, the air is warmer than the earth at that depth; for the earth is tardy both in receiving heat, and delivering it: at ninety feet it is nearly equal in winter and fummer. Land imbibes eight or ten degrees more heat than the fea in fummer; and is eight or ten degrees colder in winter.

That electricity has a great affinity to water, and affifts its rife in vapour, is evident from many experiments. Two flips of leaf-gold, $c c$, fig. ${ }^{13}$, Plate XVI. fufpended in a fmall cylinder of glafs d, with two fmall flips of tin-foil ftuck to the infide of the glafs at 00 , is called an electrometer: if an hollow cap, n, have a little water put in it, when a red-hot coal is dropt into the water, a vapour arifes, and carries with it a portion of the natural electricity from the cap; the flips of leaf gold (by hanging from the cap) alfo, having loft part of their electricity, feparate with negative electricity, and reffore what they loft by retouching the flips of tin-foil oo. See Electricity.

When vapours, by thefe powers, have rifen into the upper and colder regions of the atmofphere, their parts will be ftill kept afunder by the repulfive power of fire or electricity ; but when electricity is drawn from its union with this water to the earth, the vapours coalefce; little affemblages of particles get together, and millions of thefe, obftructing the rays of the fun, are called clouds. Cold and winds affift this coalefcence, and particularly the attraction which thefe little affemblages of watery particles have upon one another, by which fo many of them get together, that every addition now makes the drop become fpecifically, or bulk for bulk, heavier than the air, and they begin to defcend as drops of rain; but though flowly at firft, they foon accelerate, by attracting fome, and falling on other drops, increafing fo much both in bulk and motion in their defcent, that a bowl placed on the ground would receive, in a fhower of rain, almoft twice the quantity of water that a fimilar bowl would on a neighbouring tall fteeple: for water, even in a fate of folution in the air, is eafily feparated from it by cold; and as the upper region of our atmofphere is known to be intenfely cold, the drops that defcend from it muft be fo alfo, and by their coldnefs will condenfe the diffolved vapours in the air as they pafs, and thus alfo increafe their quantity even in the infignificant height of a church fteeple.

Heat has certainly a great influence in fufpending vapours in the air; and as we often fee two currents of air moving in contrary directions, and probably of different temperatures, the warmer current will be cooled by the colder, and confequently difpofe it to part with the vapours it holds in folution; hence rain will follow. Sometimes a cloud, juft in the act of precipitating, will be arrefted
by a warm current of air, and diffolve and difappear, while we are looking at it.

As the air derives its heat from the carth (as hereafter will be proved), it neceflarily grows colder and colder the higher we afcend in it; infomuch, that aqueous vapours are fometimes frozen before they become drops. In this cafe, little icicles are formed among the clouds, which, ficking together, form thofe flocculent maffes we call finow.

Hail-ftones are drops of water frozen in their defcent. In general they are round and fmall; but attracting, and falling on each other in their defcent, many ftick together, and become angular, and fometimes large enough to break windows, \&cc.

The difpofition of the atmofphere to retain or part with its vapours, is beft indicated by the barometer, fig. 12, Plate XVI. This inftrument is a tube of glafs, about thirty-four inches long, thut at one end (or hermetically fealed, as it is called), and open at the other ; this tube is filled with clean quickfilver, and warmed fo as to drive out any bubbles of air that may lodge unfeen within the glafs, and, with a finger on its open end, it muft be inverted in a bafon of quickfilver ; then will the quickfilver fall from the top of the tube a few inches (leaving the fpace above a perfect vacuum), till it becomes a counterpoife to the weight of the air preffing on the quickfilver in the bafon. The height at which the quick filver in the tube ftands above the furface of that in the bafon, muft now be meafured; perhaps, it may be thirty inches; then muft a fcale of three inches be divided into tenths, viz. from twenty-eight to thirty-one, and
fixed on the frame to which the tube and bafon are faftened: for, in our climate, the quickfilver feldom rifes above thirty-one inches above the bafon, or falls lower than twenty-eight inches. When the air is in an heavy and permanent fate, fufceptible of retaining vapour in a fate of folution, it preffes the mercury up, perhaps, to 30 or 30.5 . When lighter, and liable to let the vapours coalefce, it preffes light on the quickfilver in the bafon, and that in the tube falls, perhaps, to 28.5 ; then do we look for rain or wind. But in our infular fituation, the changes in the weather are fo frequent and fudden, that this inftrument is not fo indecative as on the continent. In order, however, to make it as prophetical as we can, we fhould obferve the top of the quickfilver in the tube ; if it appears conver, it is going to rife ; if flat, or hollow, it is going to fall. For it will rife and fall in the middle, when the attraction of the tube will keep it fationary at the fides; and it is the fides we generally look at, and fix the indexes to. All fluids flow through themfelves eafier than through pipes of any kind; even a drain in a field ought to be deeper than it commonly is, that the water may flow over itfelf.

To conftruct a barometer really indicative of the approaching weather, I made this alteration: In the wheel-barometer, fig. 6. Plate XVI. the tube is bent, and open at its fhort end. When the tube is filled, the quickfilver will rife in the fhort tube to c, on which a glafs ball fwims, a little heavier than the weight n. As the air grows heavier, it will force the mercury down at $c \rho$, and make the index rife. As it grows lighter, the quick filver will rife at c, and deprefs or fink the index. Now, as the fcale has two inches to reprefent one, the ball c falling half an inch, will produce two inches on the fcale, and the leaft fwell or depreffion of the quick filver at c
will be amply indicated on the fcale. The feale gives a better idea of rifing and falling than a wheel : all the parts are concealed, except the fcale and index; fo that it is not liable to be broken : and the indicative part is at the bottom inftead of the top, and, therefore, more conveniently feen. There is a diumal nutation in the rife and fall of the quickfilver, that fhews the barometer to be a little affected by heat and cold: it rifes from fix to ten in the morning; falling from ten to two in the afternoon: from two to cight it rifes again ; and from eight to twelve at night it falls. It rifes again from midnight to fix in the morning. Thefe effects are not very confpicuous except in the torrid zone, where the ufual rife and fall are unufual; for the barometer is of little ufe in that zone, remaining almof ftationary all the year. This may, perhaps, be accounted for from the more equal balance that fubfifts about the equator between the centripetal and centrifugal forces, than in the other zones of the earth.
7. That it is a variation in the weight of the air that makes the quickfilver rife and fall in the barometer, we thus prove: We put a plain barometer under a tall receiver, on the air-pump, as fig. 12, Plate XVI. On taking out the air, the quickfilver begins to defcend, and would all fall into the bafon, if the exhaunion was complete: but on letting in the air, it rifes to o, its firft fituation. If the air in the receiver be condenfed, the quickfilyer will be forced up to the top of the tube.

The bygrometer is alfo an indicative inftument for exhibiting the relative moifture of the atmofphere ; particularly in thofe fates of the air when water is partly diffolved or diffolving, or partly presipitating, but in fuch fmall affemblages of particles that they can-
not be fenfibly felt or feen. In this ftate, thofe particles are attracted by fponges, ropes, wood, and other porous bodies, fwelling fome, and contracting others ; hence a long rope or cord will contract fo much by moifture, and expand by drynefs, that it may be made to act upon an index, fo as to form a guefs at the degree of moifture or drynefs in the air. A catgut-ftring is fill more fenfible; and the beard of the wild oat, the moft fenfible of any matter known. Bundles of paper dipt in a folution of pot-afh (which powerfully attracts water), if balanced on a fcale beam will defcend by moifture, and rife by drynefs, and become a tolerable hygrometer. Slips of whale-bone, made very thin, and acrofs the grain of the bone, makes a very fenfible hygrometer ; and dry deal, or fpongy mahogany, made into a thin flip, acrofs the grain of the wood, about two feet long, and one inch wide, as fig. 19, Plate XVI. contracts by drynefs, and expands by moifture: a d is the flip, faftened by a to a wall, to be expofed to the air, but not to rain : this flip has the index $c g$ attacired to it at d; the index turns on the fulcrum c, and points to a fcale. This is the moft alive of any of the others; but neither this nor any of the others afcertain the real quantity of moifture contained in a given quantity of air : fo that dry, moift, wect, \&cc. on the fcale of the hygrometer, are terms at prefent without any definitive meaning. By obferving this inftrument, in time, however, as near a guefs may be formed of approaching weather as by the barometer. Thefe abforbents foaked in water, and dryed to the greateft poffible degree with pot-a/h and falt of tartar (which abforb moifture in an extraordinary degree), have all hitherto failed.
8. Though it is needlefs to cxhibit any further proofs of the air's gravity and preffire, yet its forcing quickfilver through the pores
of wood, is too elegant an experiment to be omitted. A willorv ftick is fixed in the bottom of a fmall tum-difh, c, fig. 21, Plate X V I. which is placed on the neck of a bottle, fo as to foop it, and prevent any air from getting in ; quickfilver is then poured into the difh, and the air extracted from the bottle ; the air's preflure upon the quickfilver forces it through the pores of the fick in thoufands of beautiful ftreams. A hole is made in the bottom of the bottle for the air to go through, with a knob over it, to prevent the quickfilver from falling into the pump. If the difh and ftick be fixed on a ftop-cock, and the cock be fcrewed into the top of a tall receiver, and within the receiver there be inverted fuch a glafs as r, fig. 16, Plate XVI. then may the receiver be exhaufted before the quick filver is let into it. If now the cock be opened in the dark, the quickfilver will be forced by the preffure of the air through the pores of the ftick upon the included and inverted glafs r, and falling down its fide, excite fo much electricity as to make for feveral minutes the receiver appear filled with flames.
9. We have not yet eftimated what, or how much, this preffure is. I take two hemifpheres, whofe diameters are three inches, and their area feven fquare inches, fig. 23, Plate XVI. I fcrew the lower on the pump, and put a wet piece of leather between it and the upper, as fig. 23 , then draw out the air from between them, and turn the cock; by this means, they become faftened together, with a force that is equal to the weight of a column of air whofe bafe is feven fquare inches, and height forty-five miles. To try how much this force is, I fcrew the ftop-cock c into the board d, and applying the fteelyard, r, and weights, I find it requires upwards of 100 lb . to pull them afunder! fo that 100 lo . is the weight of the column of air G, fuppofed to be forty-five miles in height, and feven
inches fquare at bottom: or about 15 lb . upon one fquare inch of the earth's furface! !

Many of thefe effects may be attributed to what is vulgarly called fuction: but we deny the exiftence of any fuch principle. The preffiure or fpring of the air accomints for every thing that has the appearance of fuction.

The above effect may be produced by condenfed as well as by common air: for the fame effects are produced when we make ufe of a condenfed atmofphere to work againft common air, as when we make ufe of common air to work againft a vacuum.-Put the hemifpheres together in common air, and within a ftrong glafs receiver capable of being fcrewed tight on the forcing fyringe y y m , fig. 12, Plate XVII. and force the air into a receiver, and the hemifpheres will be as effectually incapable of feparation as they were by the preffure of the common atmofphere in the laft experiment.

1. I place a fmall receiver on the leather of the pump-plate, at a diftance from the hole from whence the fuction may be fuppofed to proceed, and pour a little water round it. Over this receiver, and over the hole, I place a large receiver, capable of covering both at a time, fig. 3, Plate XVI. On exhaufting, I fee air come from under the fmall receiver, by the bubbles it makes in the water, and yet, when I thake the pump, I find it is quite loofe; while the larger receiver is fo fixed to the plate that I can lift the pump by it. Why is not the fmall receiver faftened? I Juck the air out of it as well as the large one, yet one is faft and the other loofe. I now let the air into the large receiver, and the tables are turned; the fmall one is.
fixed, and the large one releafed. Can this be fuction? The fimall receiver was fixed after the fuction had ceafed! The fact is, that having taken the air out of both, the large one muft be fixed, by being expofed to the preffure of the outward air; but the fmall one could not, becaufe there was no air on its outfide to prefs it down: but when the air was let in upon it, and was not able to get under it fo faft as it wrapt round it and preffed it down, it became faftened by the fame means that releafed the other.
2. A boy faftens the cnd of a ftring in the centre of a round piece of wet leather, fig. 10, Plate XVI. he then preffes the leather on a flat ftone, and by pulling at the ftring he lifts the ftone, thinking it is fucked up by the leather. No, no, my young Tyro, when you become a little better acquainted with philofophy, you will find it done by the preffire of the atmofphere. You prefs the piece of wet leather to the ftone, and by pulling at the ftring, you rife up the centre of the leather and make a vacuum under it; then will the air endeavour to get into the vacuum, and prefs the edges of the leather againft the ftone, and the ftone againft the leather, with a force equal to the weight of an ordinary pebble.
3. The inftrument called a transferrer, explodes the doctrine of fuction ftill more effectually. I fcrew the apparatus, fig. 27 , Plate XVI. into the pump-plate, by the ftop-cock c, leaving the cock d open, and e flut. On exhaufting, I faften the glafs g on its plate, but the receiver n is loofe. I then difengage the whole apparatus from the pump (firft fhutting the cocks c and d), and then can faften the glafs n on its plate, by opening the cock e, and both can be turned down without fear of falling on the floor. Why? The reseiver g is exhaufted through the chamnel of the transferrer, and
the cocks c and d, as effectually, as if it flood on the plate of the air-pump : but when this apparatus is difengaged from the pump, and the receiver n is placed on its plate, and a communication is made between the infides of the two receivers, by opening the cock c, the air in n rufhes through the cocks to refore an equilibrium with g, and becomes, in a degree, exhaufted itfelf; for it divides its air between its exhaufted neighbour g and itfelf, and thereby becomes fubject to the preffure of the atmofphere; depofiting a fhower of rain, in parting with its air, and becoming fixed to its plate. Could n be fucked down, when all fuction had ceafed, and the whole apparatus was removed from the pump?
4. The common houfehold pump affifts in exploding the idea of fuction; for we prove that water rifes in it by the preflure of the atmofphere on the well. Fig. 9, Plate XVI. is a fucking-pump; s is the cylinder of wood, or metal, in which the pifton r works. In this pifton there is a trap-door, or valve, opening upward, that will fuffer water to rife through it, but when fhut, will prevent its return. When this pifton is drawn up by the pump-handle, or lever, t, as high as s, it lifts the column of air that refts upon it, and would have left a vacuum between r and s, if the air below did not, by its elaftic fpring, endeavour to reftore an equilibrium; and, by that means, render the air below r thinner within the pump than it is without. Hence a difference takes place between the preffiure of the air within the pump, and that without ; of courfe, the prefiure on the well being greater than that within the pump, the water will be forced up the tube through the valve u, which valve fhutting by its own weight, will retain the water fo raifed, both above and below it. The next ftroke of the pump-handle will raife the water a little higher; the lower valve ftill retaining the water that has rifen
through it; and fo on, till the water has rifen to the height of thirty or thirty-two feet, when it ftops, and no action of the pifton, above it, can raife it further. Why ?-Becaufe a column of water of thirty, thirty-one, or thirty-two feet high, is equal in weight to a fimilar column of air of forty-five miles high. Is it not the preffure of the atmofphere, then, on the well, that forces the water up the pump? and inftructs us, That a pifton muft always work within thefe heights, above the furface of the water?

But let us try if water will rife in a pump by fuction, when there is no air to prefs upon the well. Fig. 1, Plate XVI. a, is a pump of the fame nature as that above; it is fcrewed tight into the plate $b c$, which covers equally tight the open receiver d. While the air has free accefs to the water, in the cup o, if the pump be worked, the water will rife. But now I place this apparatus upon the pump-plate e f, and exhauft the air from the receiver, and of courfe from off the water: if the pump be then worked with the utmoft violence, not a drop of water will rife.
$5^{\text {th }}$. The fucking of a child feems favourable to the doctrine of fuction. But the rarefaction within the child's mouth, and the preffure of the air on the nurfe's breaft, are the caufes by which the nutritive aliment is forced into the child's mouth : for the human mouth is a natural air-pump. If the tip of the tongue touch the teeth, the cheeks cannot be fucked in between the tecth ; but when the tongue is drawn back, the air is condenfed behind the tongue, and rarefied before it, fo that the air without, forces in the cheeks between the teeth. The cavity of the mouth may, therefore, be confidered as the barrel of an air-pump, and the tongue as its pifoni. A child, by inftinct, draws his tongue backwards and forwards,
keeping up a continued rarity in the forepart of the mouth, and the preffure of the air on the breaft, forces the milk into that rarity. If a cupping-glafs be fcrewed to a fmall fyringe, and placed on the cheek, and the fyringe be worked, the flefh will be forced into the glafs, and both the glafs and fyringe will hang on the cheek : this experiment alfo confutes the doctrine of fuction.

6th. Breathing may, in fome meafure, be faid to depend on the preffure of the atmofphere. Between the thorax, or cheft, and the abdomen, or belly, there is a flefliy flat partition, called the diaphragm, or midriff. By the involuntary action of the intercoftal mufcles, this diaphragm is made to rife and fall in its centre, thereby alternately increafing and diminifhing the cavity of the thorax; and, confequently, alternately rarefying and condenfing the air among the veficles of the lung's. When the diaphragm defcends, the air in the thorax becomes rarefied ; and to reftore an equilibrum, the outward air rufhes through the mouth and nofe into the lungs, and we are faid to infpire. But on the rife of the diaphragm, the air (as it were) is fqueezed out, and we are faid to expire. This operation going on from the moment of our birth, we ceafe to feel this mechanifm fenfibly, long before we are capable of obferving or reflecting upon it. Hence breathing feems to us fpontaneous; as if no mechanifm was concerned. The lungs are immumerable bladders, very fmall and long, impending, as it were, from the windpipe; and fimilar ramifications of blood veffels rife up among them; fo that the air and blood veffels intermix, like the fingers of the right hand, put in between the fingers of the left, lengthwife : wonderfully convenient for bringing about that purification which the venal blood receives in its paffage through the lungs. For, after the blood has been forced through the arteries, by the con-
tractions of the heart, and has returned to it again through the veins, and has alfo received an addition from the food, through the lacteals, it makes a digreffion from the general circulation, up to the lungs, and is rather thick, and of a dark purple colour, occafioned by its lofs of the caloric, or fire, it derived from the air, and the quantity of fixed air that united itfelf with it in its paffage through the body. Here the blood undergoes a furprifing change; it almoft inftantly becomes of a beautiful red colour, and fo thin, that, on its return to the heart, it can be forced through the fineft capillary veffels. Whence arifes this change?-Undoubtedly fromthe air. For, as the air and blood veffels intermix, and touch with fuch a quantity of furface, they exchange qualities with the utmoft facility ; the blood imbibing the oxygen, or vital part of the air, as well as its latent fire; and delivering to the remaining air the fixed air, and other mephitic gas, which makes the expired air azotic, and unfit to be refpired again. The blood fo renewed and purified in the lungs, returns to the heart alive, and being by that mufcle forced again through the arteries, it diffributes nutrition and heat through every part of the body. Returning again through the veins, it is again fent by the heart up to the lungs, $\& c c$. $\& c$.

The paufe between every expiration, and the next infpiration, gives the heated and ejected air time to rife above the head, and efcape out of the way of the next infpiration; fo it is evident that nature never defigned us to breathe the fame air over and over again, as muft be the cafe when we are inclofed in clofe and low rooms, double curtains, \&c.

Plants expofed to light emit vital air, and imbibe azote ; while man is kept alive by breathing vital air, and emitting azote. It
appears then that the animal and vegetable kingdoms labour mutually for each other; fo that by this admirable reciprocity of fervices the atmofphere is repaired, and an equilibrium maintained among its conftituent parts.

That this is the real œconomy of this part of nature, is provable by many experiments.

1. Blood placed under a bell-glafs, filled with vital air, will remain florid, and without alteration for many days; but blood expofed to common air foon changes, and becomes putrid.
2. I put the fhort end of the crooked tube c, fig. 28, Plate XVI. into the inverted glafs d, and immerfe both in a large bafon of water; by applying the mouth at e, I can breathe the air in the glafs d, without any mixture of outward air. When the air has been half a dozen times in my lungs, I take the crane c out of d, and put a lighted candle into d, which is inftantly extinguifhed. If I then put a live bird into it, the bird is foon convulfed and dies! for air that extinguifhes flame is fatal to all animals that breathe air. Therefore a candle fhould be fixed to the end of a long pole, to try the air in vaults, caverns, places long fhut up, \&ic. before they are entered. In the above experiment, the vital air is abforbed into the blood, and diminifhed in bulk; its azote and a little fixed air is left in the glafs; but if to this azote one third of its bulk of oxygen, or vital air, be added, it will become atmofpheric air again, in which a bird will live, and a candle burn, as in common air before. From this, and other experiments, it appears to many that the general mafs of the atmofphere confifts of two kinds of air, viz. about one third of oxygen gas, or vital air; and two thirds of azote,
or poifonous air, that will neither fupport fire nor animal life. Other experiments that favour this hypothefis are :
3. If a piece of tinder be fixed to the end of a fmall wire, and, when ignited, be plunged into a two-quart jar filled with vital air, the iron will burn with a vivid flame, and dart out fulphuric fparks of a moft eifulgent brightnefs! While this beautiful extrication of light from the iron is going on, the air will be obferved to diminifh, and the little globules of oxyd, or rather finery cinder, that drop from the iron, will be found to have increafed in both bulk and weight above the iron fo burnt; it is even faid that the increafed weight is exactly equal to the weight of the air which difappears in the operation: the remaining air in the jar will be found rather worfe than atmofpheric air, or approaching to azote. This beautiful and friking experiment is generally exhibited to prove that metals change to an oxyd, or calx, only by imbibing the vital air; reducing that air to a folid with the oxyd; thereby increafing the bulk and weight of the oxyd above that of the iron, and alfo proportional to the diminution or lofs of the air. Hence, fay they, this very vital air may be expelled from the oxyd by heat or a firong acid in the chemico-pneumatic apparatus, and the calx, or oxyd, reduced to the very metal it was before it was ignited, or calcined. That this is fact in regard to lead and quickfilver, may be feen from the reduction of thele calces by heat, concentrated light, or any inflammable fubftance, to their original metal. But the pellicles of finery cinder that fall from the burning iron, in the above experiment, are not an oxyd; no air can be got from them by either heat or acid; nor can they be reduced to a metal by any inflammable fubftance ignited. Water is a material confituent in moft kinds of air ; and in their decompofition, water is produced.

Fire, gunpowder, and moifture, will be found in the cavity where it was fired:- infame equal quantities of inflammable and vital air together, and water will be depofited; (faid to be equal to the weight of the two airs fo inflamed). Exhauft a tall receiver on an air-pump, and a fhower of vapour will be feen to defcend in it. A fudden degree of cold will precipitate water from the air fo as to cover the walls, wainfcots, floors, and railing of houfes, with moifture; fo, in like manner, is rain, fnow, and hail, produced. Breathing in a clofe carriage covers the glaffes with moifure ; this is the moifture thrown out of the lungs in the act of breathing, condenfed by the cold on the outfide of the windows: fo it is in affembly rooms; or where a great number of people are in a clofe room : in fhort, thoufands of operations, in both nature and art, demonftrate water to be a conftituent part of moft kinds of air-for in their decompofition water is univerfally exhibited. Even water itfelf, without any other ingredient, may be converted into permanent, elafic, and refpirable air by means of heat; for fill $a b$, fig. ${ }^{15}$, Plate XVI. about two thirds with water, and the reft with quickfilver, then by laying the thumb on the open end a, and inverting the tube in the bafon of quickfilver $a c$, the water will fill the part $d b$, and the quickfilver the part $a d$. If, then, a candle be placed leifurely to heat the water in the inclined tube, it will rife in feam at b, and deprefs the quickfilver at d; this, for fome time, will be nothing but common fteam, convertible by cold back into water; but if this water be kept boiling for the face of an hour, a permanent air will be produced.

Not only from iron can light be let out, but from charcoal or any other combultible body ignited in vital air. - The charred bark
of wood produces when fo ignited the moft beautiful and vivid corrufcations.

What then is the atmofphere?-A compound of every kind of body capable of a gafous fate by means of heat or fermentation : a receptacle of aqueous vapours; mineral exhalations; of fteams, arifing from the perfpiration of whatever enjoys animal or vegetable life, and of their putrefcence when deprived of it ; of acids and oils feparated from fuel in combuftion; a chaos of the fine particles of every body with which the air and light have contact; a folution of terreftrial matter in folar light, or fire; for the fun feems to have been one of the original parents of our atmofphere by means of his heat: fo that, though we fay that atmofpheric air confifts of oxygen and azote in certain proportions, it cannot be proved to be ftrictly true ; for certainly there is fixed air (or carbonic acid air), inflammable air (or hydrogenous air), and many others; as well as fteams and exhalations from imnumerable fubftances that unite with the general mafs of the atmofphere; all kept in a fluid fate by their union with fire or light. It may be faid, that the atmofphere is half its time left without light: yes; but the effects of a fire in a room are long felt after the fire is extinct ; and cold increafes from the fetting of the fun till its rifing. Latent fire is put into action, and made fenfible, by means of active fire. I hold a poker before the fire ; it grows hot; not by the fire or heat it imbibes, but by the latent fire it already poffeffed being put into action by the repulfive power of the fire before which I held it. I lay fuel upon a fire; it will not burn till it is heated ; that is, till its inherent, its natural fire, is put in motion by the repulfive fire of external heat. I rub a piece of phofphorus between the folds of brown paper before it will ignite ; becaufe the friction puts its latent or fixed fire into
motion, and affifts its difpofition to unite with the air, to which it has the moft natural affinity, and thence to break out into flame: even a candle will not light till its fnuff be heated. Light, therefore, confidered as diluted fire, lies dormant in darknefs (without lofing much of its repulfive property), for night air is not found to be much more denfe than day air, becaufe of the fhort ablence of the fun, which by its ftream of light foon puts the fagnant fluid into motion, and produces all the effects of vifion, reflection, refraction, heat, \&c. in the day. The repulfive power of light, and its identity to that of fire, I hope will be fufficiently proved in my Optical Lecture, as well as that the fluidity of the air is owing to its repulfive power; and though fufpended light may have its power of affecting the optic nerve in the abfence of a luminous body, it ftill exifts even in darknefs, and wants only a luminous body to put it in motion, and make it fenfible light.

Oxygen gas.-That the earth is the other natural parent of the atmofphere is evident from the immenfe number of animal, vegetable, and mineral fubftances which produce air by means of heat, or by ftrong affinities. I bruife the mineral fubftance called manganefe, and put it in a ftone or iron retort, a, fig. 7 , Plate XVI. which being flat, may be thruft in between the bars of a kitchen fire; its mouth b is ground to fit the metal pipe c, and c is united to the clofe but flexible pipe of leather d; to d is joined the long metal pipe e, which may either come over the top or through the water-bath or veffel g, into b, the bottle that is to receive the air. When a brifk fire is made round the retort a, a little common air in the interftices of the manganefe will come over firft, and may be fuffered to efcape; but, after fifteen or twenty difcharges from the pipe e through the water in g, the bottle b full of water may
be inverted on the end of the pipe c, when the oxygen gas, or dephlogifticated air, will rife into it with great rapidity, and foon expel all the water that was in it ; this bottle removed, another and another may fupply its place; fo that ten or twelve quarts of pure vital air may be expelled from one pint of bruifed manganefe. Was not this air, in a folid fate, a part of the manganefe before it was expofed to fire? Did fire any thing more to it than repulfe it from the bafes with which it was united, and unite with it itfelf? and by that union keep it in a permanent gafous ftate? Does not the fun by his heat perform the fame thing every moment, and on every part of the calciform parts of the earth expofed to his heat? and is not a confiderable portion of the earth's furface (and that to a confiderable depth) in a calciform Itate? Scarcely can we lay hold of an handful of earth, but, by applying an acid to it, with a due portion of heat, vital air may be produced. It is true, that chalk, limeftone, marble, fhells of fifhes, and all calcareous earths, produce in their union with fire an air poifonous to the lungs of animals that breathe. It has been called fixed air, aërial acid, and now carbonic acid gas, as being fuppofed to be derived from charcoal. Why chalk, the dung of animals, \&c. fhould be called charcoal, is beyond my comprehenfion. That charcoal, heated in a retort, does produce the fame fort of air is certain ; fo do vegetables in the vinous fate of fermentation, and many other matters that have no other quality in common with charcoal.

Thus nitre, acted upon by either folar or culinary heat, produces oxygen gas. This falt is fpread more or lefs over the furface of the whole habitable earth, and is produced from a mixture of animal and vegetable earths and juices. The procefs of nature in producing pure air from this falt is fuccelsfully imitated by diftilla-
tion, i. e. by the fame procefs that was ufed with manganefe. No fubftance we know in nature contains fo much fire in a combined fate as oxygen gas. Metals and combuftible bodies when duly heated unite their inherent fire with the oxygen gas of the air, and light and heat are difengaged. Combuftion is therefore fimilar to refpiration : a candle will burn but a fhort time confined under a clofe veffel, and the air in which it burned will be found to have loft its oxygen part, nothing remaining but azotic gas and fixt air. So an animal that breathes air, being fhut up in a clofe veffel, will live but a fhort time ; the air will have loft its oxygen, and only azotic and fixt gas will be found to remain. Refpiration is therefore an operation in which oxygen gas is continually paffing from the gafous to the concrete fate, and at every infpiration giving out in the lungs the heat or latent fire it held in combination : and hence the heat of different fpecies of animals depends on the quantity of oxygen gas they decompofe in the act of breathing. See Blood.

How very important and various are the operations of this principle in the grand fcheme of nature! When combined with earthy fubftances it renders them combuftible; and duly excited, is ready to give out its light and beat, for the ufe and performance of many of the moft neceffary, comfortable, and pleafurable conveniences of human life. The arts are alfo indebted to it for the different and various acids; for oxygen is the principle of acidity in all bodies. When taken into the lungs it caufes animal heat and irritability.

Carbonic acid gas, or fixt air. - The effect of folar heat on chalk, limeftone, and other calcareous earths, is fixed air, or carbonic acid
air. This effect may be fmelt in chalk-pits on an hot day; and tafted, after agitating this air in a bottle half filled with water ; the water acquiring in a degree the acidulous tafte of Pyrmont water. The carbonic air that forms a thin ftratum on the floor of the Grotto del Cano (that fuffocates dogs and other low animals immerfed in it), is another inftance of the natural production of this part of our atmofphere. But as this air is fpecifically heavier than the general mafs *, it feparates from it in the night, or when the air is quiet and free from wind, and falling down on the earth, becomes elaborated into the food of plants, being a principal ingredient in the caufes of their growth. Hence arifes the fertilizing quality of lime, of fhells, and marles; and the rapid growth of plants, whofe roots are treated with fixed air. That fixed air is a confituent part of vegetables is evident from the quantity they throw out when put into a fate of fermentation; fo that, like putrefaction, which diforganizes fome bodies to feed others, fixed air is difcharged from the decompofing body, and becomes the food and part of the fubftance of the growing plant. If wood be charred in clofe veffels, fo that the air cannot efcape, the air becomes fixed in the charcoal; but if this charcoal be diftilled in the apparatus, fig. 7, Plate XVI. that fixed air becomes volatilized by the heat, and comes over an aerrial acid, a carbonic or fixed air ; the coal delivering back to the atmofphere the very particles of air it imbibed when a living plant. It is true, that folar heat is not equal to that which is neceffary to produce thofe airs in the laboratory; but when we take into the account the continued action of the fun,

[^10]and fee the fteams and exhalations which he enables the air to extract from the earth, we may fay, that our boafted effects produced in the laboratory, are but the humble imitations of what that great chemift, the Sun, has been producing every day fince the beginning. of time !

Charcoal is one of the moft powerful antifeptics: it preferves water from putrefaction; it preferves meat; fweetens rancid oil ; and is an excellent tooth-powder.

This fixt air or carbonic acid may be alfo formed by burning charcoal in fuch a quantity of oxygen gas as is exactly fufficient for its combuftion; in that cafe, both the gas and charcoal difappear, and a new gas (juft the weight of the oxygen and charcoal) takes place, which is fixt air. Water abforbs more than its bulk of fixt air.

Hydrogen gas.-Befides this heavy air which feparates from, and finks to the bottom of, the atmofphere, there is alfo a part that is lighter than the reft, and no doubt forms a ftratum in the upper regions of the atmofphere ; this, as well as the heavy air, will be mixed with the general mafs by the winds, and other commotions in the air, and may be brought within the fphere of attraction of bodies to which it has an affinity, and unite with them. This has been called phlogifton, inflammable air, and now hydrogen gas, as being fuppofed to be one of the ingredients that compofe water. It is produced by nature in various decompofitions, both animal, vegetable, and mineral. In the animal kingdom, when that fubtil chemift, putrefaction, takes in pieces an organized body, fending earth to earth, water to water, air to air, \&c. the inflammable
principle of the body is alfo let loole; and if it meets with a warm ftill air will often ignite fpontaneoufly, as may be feen in hot climates over a recent fhallow grave, on a ftill evening, like a pillar of ignited particles.

The air which fwells the bodies of dead animals is a compound of inflammable and fixt air, which, when difcharged, each returns to its proper function ; fixt air to the earth, and the roots of plants, whilft the inflammable part afcends to the upper regions, often forming meteors, falling ftars; and fometimes, in the very act of difcharge from rotten animal and vegetable fubftances, igniites in the character of Will-o'-th'-Wifp. In muddy ponds, near great towns, inflammable air may be procured in great abundance, by filling a bell-glafs in the pond with water, and inverting it in the water; if then the mud be firred with a flick beneath it, bubbles of inflammable air will rife from the mud, and fill the glafs; this air being expofed to a candle, will take fire, and often explode. The living fraxinella throws off fo great a portion of this inflammable matter, that the air around it will take fire from a candle, like the air in a coal-pit. Metals decompofing by expofure to air, or water, throw off great quantities of this inflammable matter, lofing thereby the metallic fplendor, and becoming calces, or oxyds. So iron and zinc, expofed to a violent fire, throw out inflammable air; and if iron filings are expofed in the focus of a burning-glafs, they will leap about, and fhew that aeeriform matter is expelling from them by the heat. We are infructed that metals become calces by imbibing vital air, becaufe many calces are heavier than the metals of which they are made : this is true in calces made by art, but not of thofe made by nature; for the ruft of iron is not fo heavy as the iron from whence it became a calx; nor is that of
expofed lead, copper, tin, \&c.; nor will thofe calces produce vital air, like the calces of lead, mercury, \&c. made by a ftream of air paffing over them while in a ftate of fufion ; in this procefs the air is diminifhed, its purer part difappears, and the reft will neither fupport animal life, nor flame: no doubt the calx has feized the pure part, by means of a fuperior affinity; affuming a concrete form, adding weight; and is ready to give back this concrete matter in an aeriform ftate, when forced by the power of fire, or a ftill ftronger affinity, as has been fhewn. May not the particles of this kind of air have a ftronger affinity to fire, or light, than any other; by which its particles are pufhed to a greater diftance from each other than in common air? and thereby derive its great levity, its elafticity, and inflammability? but alone it extinguifhes flame; and will not explode without a mixture of vital or common air: for vital air contains within itfelf the principle of fire, as well as inflammable air, but holds it with a weaker affinity; hence this fire emerges upon its union with the body in combuftion; and by extricating fire from inflammable air with fome difficulty, it burfs out with explofion.

Inflammable air (or bydrogen gas) is produced in great abundance by means of the apparatus, fig. 22, Plate XVI. $a b c$ is an horlefhoe tube of caft-iron, with the ends a and c made to receive ground ftopples; the tube is filled with iron wire, or bits of clean iron, and then thruft in between the bars of a hot firc: the cup and tube $d a$ is luted into the end a, and fo is the tube into the end c. The cup d is now filled with water, which is prevented from falling into the great tube $a b c$ by the conical valve e : but this valve cain be opened more or lefs by the forew s, fo as to let the water drop leifurely into the hot tube $a b c$. Inflammable air (thirteen times
lighter than common air) will now come over with violence into the inverted bottle q, which muft be replaced with difpatch by other bottles filled with water. When the procefs is over, the tube and the iron within it will be found to have acquired weight: the wire, in particular ; which will appear like Ethiop's mineral, or the fcales around a black finith's anvil.

Mr. Lavoifier having made this experiment the foundation of a new theory in chemiftry, it is neceffary to obferve, that he weighed the tube, the wire, and the water; and he fecured the water from evaporation prior to the procefs : when it was over, he weighed the tube, the wire, and the air produced, and found they had acquired juft the fame weight which the water had loft. This he confidered as analytically decompofing the water, or taking it in pieces, as it were; and in order fynthetically to recompofe it, or put it together again, he took the air produced, and as much oxygen gas, or vital air, as he fuppofed might be produced from the oxydated wire and tube, and fetting fire to them by an electrical fpark in a ftrong clofe veffel (after beingexhaufted), he found, when the flame had expired, a quantity of water depofitedexactly equal in weight to that which was expended in the firft experiment. This experiment was contrived and executed with the utmoft precifion, caution, and addrefs, and with inftruments in which neither accuracy nor expence was wanting ; yet I confefs that the conclufion drawn from it, viz. that water is compofed of hydrogen and oxygen gas, is by no means clear to me. In the firft place he takes as much oxygen gas as he fuppofes might be produced from the oxyd of iron and wire to burn with the hydrogen gas : now this is fuppofition ; he did not make the oxygen gas from the individual oxydated iron ; but what is more, it is impoffible to make it from iron fo oxydated,
for that I have tried over and over again, as well as many abler chemifts. Befides, to weigh air accurately, and particularly air thirteen times lighter than common air, even with the nice and expenfive apparatus of Mr. Lavoifier, I thiink next to impoflible. That water has the appearance of being produced by the burning of thefe two airs, there is no doubt; nay, that its weight may approximate to the weight of the tivo airs fo burnt, is alfo very probable; for water is detectable in all kinds of air, and doubtlefs is its heavieft part ; therefore, when any air is decompofed, water is produced. It is well known, that a mixture of highly concentrated fulphuric acid (vitriolic acid) and water, will produce a heat greater than that of boiling water; for if in two equal quantities of thefe a thin glafs veffel be put filled with water, the water will foon boil. Now when inflammable air is produced from iron filings and diluted vitriolic acid in the common way, this heat is produced: for if that heat be fuffered to cool before the iron is put to the mixture, the effervefcence will be very weak, fhewing how neceffary fire is in the production of inflammable air. Into the ftrong bottle a, fig. 30, Plate XVI. we put a quantity of nails, iron filings, or bits of clean iron, and juft cover them with water; if then, about one fourth of the quantity of water of ftrong vitriolic acid be poured into the bottle, a violent ebullition will begin : the crane tube b (having one end à ground ftopple for the bottle a) is now fixed in the bottle a, and its other end under the bottle c (full of water, and inverted in the bafon of water d); bubbles of inflammable air now rife rapidly to the top of the bottle c, and difplace the water, foon filling the bottle. If the thumb be then placed on the mouth of the bottle, while under water, the bottle may be taken out; and if its mouth be held to a candle, a fmall explofion will take place there: if then it be fopt, and again addreffed to the candle a fecond, a third, and even
a dozen explofions will fucceed one another; for the air will not inflame but in contact, or in mixture with common air, fo the explofions take only place at the mouth of the bottle. But if a bottle be only half filled with inflammable air, and the other half with common air, it vill explode all at once, and moifure will be found depofited in the bottle. But to make this air an ingredient in aërial gunpowder, it muft be mixed with an equal quantity of oxygen gas (vital air), in a ftrong bottle; otherwife, when held to the candle, the explofion and expanfion are fo great, as to thiver a weak bottle to picces. Pifiols are often charged with thefe two airs, in the pneumatic tube ; and fometimes, when common air is ufed, by placing the piftol over the effervefcent bottle, as fig. 24, Plate XVI. The piftol a, being naturally full of common air, has its mouth placed loofe on that of the bottle; but the inflammable air being lighter will mount up to the top of the piftol, and difplace an equal quantity of the common air: if now a cork be put in the mouth of a piftol, and the knob c approach the excited conductor of an electrical machine, the cork will be difcharged with almoft the velocity of a mufket ball, and with a loud report: for the knob is fcrewed on the end of a wire $c d$; which wire being cemented in the infide of a thick tube of glafs, it becomes infulated from the metal of which the piftol is formed ; this tube is alfo cemented into the neck of the piftol; fo that when the knob approaches the electrical machine, a fpark takes place at d, which fets fire to the inflammable and common air in the piftol, and difcharges the cork. Many other amufing experiments are made by inflammable air, as may be feen in the lecture on electricity. But the intention here is to endeavour to account for the appearance of water on the inflammation of thefe two airs. The fulphuric acid (vitriolic acid) will not attack iron alone, it muft be highly diluted
with water, before inflammable air will be difcharged from the iron (for ftill I do conceive that it is the iron which produces the greateft part of this air) : water inftantly feizes the acid, which becomes decompofed, and its latent fire is let loofe, to the air or other furrounding bodies;-and the water and acid are diminifhed in their volume, that is, they form a penetration with each other, that makes their fum lefs than their two parts feparate, occafioned by the lofs of heat. It is alfo proved, that when this gas is let through water in the veffels c and d, fig. 30, Plate XVI. that the fame quantity weighs one eighth more than when it is let through thefe veffels filled with quickfilver; proving its ftrong affinity to water, and that it holds it in folution.- Now as this experiment is generally made through water, and as a quantity of water rifes with the gas in fteam, from the exceffive heat produced by the water and acid, as above, is it not more than probable that, in decompofing this air by firing it, the water in folution, and that in the character of fteam, become difengaged, and return to the elementary ftate of fimple water, and even to weigh as much as the air, when a pint of it, fo mixed, weighs no more than $1 \frac{2}{3}$ grain? With the moft profound refpect for the valuable names I differ from, I do think water. an element, notwithfanding its apparent compofition and decompofition. Is it not the general cement of all other matters? exifting (though without the character of water) in falts, cryfals, animals, plants, \&xc. and in this kind of combination giving hardnefs and tranfparency to bodies? and uniting the particles of ftones, plafters, lutes, \&cc.? Is there any fubfance in nature in which we do not find it combined more or lefs? From even matals it can be expelled vifibly by heat. It is united with all acids whether in a liquid or faline form ; and, therefore, in the decompofition of bodies, water is univerfally difengaged. If then, as has been proved by
experiment, fig. is, Plate XVI. water may be converted into a permanent elaftic gas by fire; and that every fubftance in nature is alfo capable of producing air when duly penetrated with caloric (fire) ; is it natural to fuppofe that a fluid which conftitutes morethan half the furface of our globe fhould be formed by the flow procefs of burning oxygen and hydrogen gas together? Is it not more confiftent with the wifdom and frugality of nature, that thefe gafes fhould be formed from water? But thefe gafes cannot be formed from water alone; other fubftances, containing inflammable matter, muft be linited with water in the procefs, or no hydrogen gas will be produced. With a blunt feel point, a hole may be beat through at a in the bottle c, fig. 14, Plate XVI. If then the wire d and its knob be cemented in that hole, the bottle may be filled with water, and inverted in the bafon of water g. Take a wire, with a knob at each end y, and bend it fo that one knob may be half an inch from the knob already in the bottle; if the knob y be made to communicate with the outfide of a Leyden jar, and the knob d, with its infide, difcharges of electricity through the water will generate inflammable air; which can be only an union of electici fire and water: proving, that if fire can be forced into union with water, the compound will be inflammable air. Iron contains inflammable matter, and will burn like a fick in vital air. Both in the experiment fig. 22, and that fig. 30, Plate XVI. the iron loft its inflammable principle, and became ruft, or a finery cinder; it is, therefore, more than fuppofititious that the iron fupplied the inflammable principle to the gas, and the electricity to the water. This inflammable principle has been called the phlogifton of metals; I take the liberty of calling it light, in the firft inftance, and fire in the fecond, when it becomes condenfed, incorporated with, and a conftituent part of, a body. That light forms the
greateft part of all plants, I hope will be fufficiently proved in the Optical Lecture; that wood in charring has this light concentrated into fixt fire; and that (according to Bergman, ninety-nine parts in 100 of charcoal is fixt fire, or phlogifton) the ore of iron muft be fluxed in a furnace with charcoal before it becomes a metal. Does not the metal then derive its fplendor, its texture, its ftrength, \&cc. from the inflammable part of the charcoal? and is it not ready to give back the inflammable principle in its original ftate of light when ignited in vital air? and alfo when an acid tears it from its bafis in the formation of inflammable air? This air ftill holds in folution the fixed fire of the metal, which may be exhibited in its original fate of light when ignited in vital air, and be thence thrown back into the general mafs of light. This doctrine is further corroborated by reducing the calces of metals to the metallic ftate in inflammable air. Put a little minium, or calx of lead, in the crucible a, fig. 26, Plate XVI. and place it on a ftand under and near the top of the bell-glafs, and place both in a bafon of quickfilver, with the fyphon $s t$: the mouth applied at t may draw out the air from the bell-glafs, and the quickfilver will rife up to the crucible by the preffure of the atmofphere on that in the bafon. If then the bottle and crane, $a b$, of fig. 30 , be replenifhed with iron filings, and diluted vitriolic acid, and the crane be put under the bell-giafs, as in fig. 30 , the quickfilver will foon fall to the level 00 , and the fpace a will be filled nearly with inflammable air. The apparatus being expofed to a hot fun, and the large lens $n r$ held before it, fo that its focus may heat the minium; the air in the bell-glafs will foon begin to diminifh, and the minium to change from a red to a yellowifh colour: as the air keeps diminifhing, the metal revives; and if there be air enough, the calx will foon become fplendid lead. What has made it fo?-Doubtlefs its union with the inflam-
mable air ; and for the fame reafon that charcoal will revive a calx, or an ore, into a metal. It is true, that folar light, concentrated on a calx, by a large. burning lens, will reftore the calx to its metallic flate, and, no doubt, it affiffed in the laft experiment; but this is another proof that light is the true effence of all inflammability.

From the great inflammability of this kind of air, there is reafon to believe it is more faturated with latent fire than any other part of the atmofphere; that its particles are repulfed to a greater diftance; fo that with as great elafticity as common air, it poffeffes the fingular property of being ten or twelve times lighter, bulk for bulk. Upon its firft difcovery, I thought that if a very light bag could be devifed that would retain it, the bag and air together would be buoyed up in the atmofphere, like a cork in water; my firft trial was to fill foap bubbles with it; they fucceeded, and were the firft air-balloons ever made. This amufing experiment is eafily made by tying the mouth of a bladder to a ftop-cock, c; fig: 25 , Plate XVI. and fcrewing this on another fixed on the top of a bell-receiver a. This receiver is filled with inflammable air, as before directed; if then the two ftop-cocks be opened, and the receiver a preffed down into the water b, the air will be forced up into the bladder d, and fill it : the ftop-cocks being fhut, the bladder may be unfcrewed from the receiver a, and a fhort tobaccopipe, with a little thread wrapt round its end, may be fcrewed into the ftop-cock of the bladder, as fig. 11, Plate XVI. When the pipe-head is immerfed in foap-fuds, and the bladder a little fqueezed, bubbles may be thrown from the pipe; that, in ftill air, will rife out of fight. This effect depends entirely on hydroftatic principles, viz. that a body heavier than its bulk of a fluid, will fink in that fluid; for the pillar of which that body is a part, being heavier
than the pillars of the fluid that furround it, the body muft fink by its fuperior gravity. But a body that is lighter than its bulk of the fluid in which it is immerfed, will rife up and float on the furface, and part of it will rife above the furface. So a body being of the fame weight in a homogeneous fluid, as its bulk of that fluid, will float promifcuoufly at any depth in it. Air-balloons that could float two or three men in the atmofphere, rofe on this principle. Gores of filk were fewed together, fo as to form a pear-like bag (which was made tolerably air-tight by a varnifh made of India rubber), twenty-feven feet in its greateft diameter. A net of fimall cords is fpread over its top, terminating a little below the bottom in a fmall bafket, in which the aëronauts were fufpended. A tube of the fame materials as the balloon hung from its bottom to receive the air, and alfo to let it out when the balloon began to fwell in the upper regions of the atmofphere. The air was produced from zinc and iron, by diluted vitriolic acid, in leaden retorts (becaufe that acid will not diffolve lead), and fufpended between two long perpendicular poles; the balloon was thus filled with inflammable air. When empty, the weight of the balloon, and two adventurers, was 604. lb .: but 20 lb . more being hung to the balloon when full, kept it in equilibrio with the atmofphere ; fo that its power of afcent, added to its weight, made $624^{l} \mathrm{lbs}$. the weight of an equal bulk of atmofpheric air, to that of the balloon, the two aëronauts, bafkets, $\& \mathrm{c}$. On its afcent, the barometer food at 30°, and foon fell to 27°, by which it was calculated that the balloon was about 600 yards above the earth; by throwing out ballaft occafionally as the balloon defcended by lofs of air, it was kept about that height an hour and three quarters, on a voyage of twenty-feven miles.

Additional fire, added to that which the atmofphere naturally
contains, repulfes its particles to fuch a diftance, as to make the air, fo heated, rife in the atmofphere like a cork in water: hence fmoke is carried up by its temporary comnection with heated air ; and its grofs and footy part is precipitated back to the earth when that air becomes cooled by mixing with common air. This dićtated the idea of a montgolfier, or fire-balloon, fig. 29, Plate XVI. A light paper bag, with its mouth downward, will rife in the air, if a fponge, a, foaked in fpirit of wine, be fupported a little above the mouth and fet on fire. It is neceffary, firft, to inflate the bag a little by burning flips of paper in it; the fponge will then burn without danger of firing the balloon; in which cafe it will often rife above the clouds. Machines of this kind have been made of 60 feet in height, and 43 in diameter, and capable of lifting five hundred weight from the ground. Small balloons may be made by fticking gores of filk-paper together with gum-water. For thefe machines to have the power of afcending with the weight of two or three men, their volume muft be fo large, that their direction will always be fubject to the wind. But, obeying the wind, they have afcended over camps and befieged towns, with a cord fo attached to them that they could be drawn back to the place from whence they were launched.

Various other airs have been fabricated by art, poffeffing fingular propertics.

Nitrous Air, or the teft air, is formed of the fire of any metal, united with the nitrous acid. Copper is moft commonly ufed; being put in fmall flips in a bottle, a, fig. 17, Plate XVI. This bottle is then nearly filled with diluted nitrous acid; and the craneftopple c is fixed in it, and its end put under the fhelf d, which
has holes in it (as z) to let up the gas. This fhelf is juft covered with water; and the ciftern in which it is fixed is deep cmough to fuffer jars and bottles to become inverted under water. The jar c, therefore, being filled with water in the ciftern, and inverted on the fhelf d, it receives the gas, and the water in it falls down into the ciftern.

This criterion air unites fuddenly with vital air, with which it forms nitrous acid, and which appears in a brown cloud; this nitrous acid is fuddenly imbibed by water, and in proportion to the quantity of vital air contained in the mixture. Pure vital air will imbibe fix times its bulk of nitrous air, before water will ceafe to imbibe the two airs in the character of nitrous acid. And common air will take up a little more than half its bulk of nitrous air without its bulk being increafed.

Thefe experiments are thus made. A fimall glafs cylinder, fig. 1, Plate XVII. is cemented into the brafs focket c, in which is a flider, a, that will fhut clofe over the mouth of the glafs; this veffel is called a meafure. This meafure being filled with water, and inverted in the pneumatic ciftern, fig. 17, Plate X VI. and having the tumel m put under it, is eafily filled with any gas or air under water: the flider is then puflhed in, and the air in the mouth of the meafure turned out, and fo the gas or air is transferred into the long tube, fig. 5, Plate XVII. already inverted in the ciftern and full of water. The gas fo transferred will rife up to the top of the tube, and expelling its loulk of water, will occupy the face $x y$. If this be vital air, then may fix meafures of nitrous gas be added to it, and, after all, the air will only occupy the fpace $x y$. If two meafures of air be taken from the very clofe and populous
parts of a great city, and put into the tall tube $z x$ (called an cudiometer), and one meafure of the teft, or nitrous air, be put to them, a brown effervefcence will take place, and the three meafures will inftantly only occupy the place of two; difplacing the water from x to r. The air from fuch places may be confidered as the ftandard of impurity : and air from any place may be eafily taken, and eafily conveyed to the pncumatic ciftern, by filling a bottle with water, and pouring the water out in the place where the air is to be taken from; the bottle then becomes filled with the air of that place, and, well corked, may be conveyed to any diftance. By thefe two extremes, the quantity of vital air, in any common air, may be eafily eftimated : for as oxygen gas, or vital air, abforbed fix times its bulk of nitrous air, and only occupied its original fpace, $x y$; and as two meafures of impure air only abforbed half their bulk of the trial air, twice fix will be a fcale expreffive of the degrees of purity between r and x; i. e. if I bring a bottle of country air to the teft, and find after two meafures of it have abforbed one of the criterion air, that the water in the tube will rife above r, perhaps to s, two twelfths of the fale $r x$; then fhould we pronounce that air to contain one fixth more oxygen, or vital air, in it, than an equal quantity of the city air.

The firf dozen of bubbles that come over when the nitrous air is diftilling, fhould be thrown away ; the reft will be very good, and will be a tolerable teft of the proportion of vital air contained in any air. For it has been found that the duration of life, in animals confined in clofed veffels, keeps time nearly with this teft; i. e. two birds, or two mice, being confined in two bell-glafles of the fame fize, one full of pure vital air, and the other of fuch country air as above defcribed, which would only abforb one fixth as much
trial air as the pure air; in this cafe, if the animal in the country air lived an hour, that in the oxygen gas would live fix hours, \&c. The reafon is plain, if we recur to what has been faid refpecting breathing; for it is proved that the air taken into the lungs undergoes a decompofition: the purer part being abforbed by the blood in the lungs; the latent heat is let loofe and carried by the blood in an active and fenfible fate through the body, thereby giving it animal beat; and the impure, or azotic part, is thrown out at the mouth and noftrils. Now that air which contains mof of thofe vital principles, will fupply life the longeft. For the blood nourifhing the body as it travels through the arteries, returns by the veins to the heart and lungs a thick and dark coloured fluid, and is propelled up to the lungs, to be replenifhed with heat and vital air; it then returns into the circulation thin and florid, and capable of making its way through the fineft ramifications of the body. Hence, to breathe air in want of its natural quantity of oxygen, is to fend the blood unrecruited from the lungs into the circulation ; thick, and incapable of being forced by the heart through the fine veffels; thefe fwelling, form preffures upon the neighbouring nerves, that by degrees bring on fpafms, convulfions, and death. Thus died the people in the hole at Calcutta ; two men in a diver's bell, in the bay of Dublin; and fo would all land animals, obliged to breathe the fame air over and over again. One bird, therefore, having in its air fix times as much oxygen as the other, would neceffarily live fix times as long upon it. It is umeceflary here to expatiate upon the neceffity of breathing this pabulum as pure as poffible; all are fenfible of it, all feel its neceffity; yet, with double doors and curtains, do we ftrive to keep it from our apartments as if it were a public enemy. Many diforders to which our forefathers were ftrangers, date their number and malignancy from this un-
manly delicacy! Why are pulmonary complaints fo prevalent in large citics? Is it not from the foot, fimoke, and putrefactive vapours we breathe? Nature has guarded the lungs, by an outwork of hair at the firft pafs where the air enters the human frame; there its groffer impurities are fopt: after it has entered the noftrils, a crooked road to the mouth is lined with a gluey mucus, that arrefts fmaller particles; but fhould any of thofe pafs thefe guards, there is a centinel at the gate of the lungs, of fo irritable a nature, that if an atom touches him, he throws the whole frame into convulfion and refiftance! What has nature done all this for?-Perhaps as a hint to keep mankind from herding together, and corrupting one another in great cities. Some particles, however, will pafs this centinel in fpite of his vigilance, and form a lodgment in the lungs; and the accumulation will be reinforced, in many, by the irritable particles of fnuff. Matter thus accumulating in the lungs, where it cannot be digefted, nature is obliged to throw it out by coughing, and we call the convulfion a cold! But to return.-We eftimate the refpirable goodnefs of atmofpheric, or other airs, by the quantity of nitrous air which they will diffolve: but this air has other qualities not unworthy of notice ; its antifeptic powers are greater than thofe of fixt air; flefh meat may be preferved fweet in it for feveral weeks, in the hotteft weather.

Water and acid have fo ftrong an affinity, that four ounce meafures of water will imbibe near 300 meafures of nitrous air.

Nitrous acid entering into nitrous air, exhibits this acid in great variety; being an ingredient in the moft wholefome, the moft noxious, the moft pure and impure of all kinds of airs: for nitre difitled, yields the moft falubrious vital air; but nitrous air is noxious, and cannot be breathed.

If a bottle, fig. 4, Plate XVII. be filled three quarters with common air, and one fourth with water; and a bladder, filled with. nitrous air, be fqueezed into it; the air in the bottle will alforb the whole nitrous air, become nitrous acid, and be abforbed by the water.

Air in which animal fubftances have lain fome time in a putrid ftate, has its putrefcence wafhed away by paffing through water, and will bear the teft of nitrous air. For fmell confifts of the fine particles of bodies diffolved in fire, which particles may commonly be detached from that menfruum by mixing with water.

It is fuppofed that there is as much fire, bulk for bulk, in nitrous as in inflammable air.

Nitrous vapour arifes from nitrous acid being poured on bifo muth: a brown effervelcence iffues with rapidity from this mixture, which, being conveyed by the bent fopple tube a, fig. 2, Plate XVII. can be conveyed into, and imbibed by, water, and other fluids. So diftilled water, when warm, imbibes this vapour, and becomes very pure nitrous acid: and two meafures of this water (after inpregnation) become three. It alfo attacks copper more ftrongly than diluted nitric acid.

The volatility of this vapour in water, fo impregnated, is curious: If in an open flat veffel a perfon blows upon it, a copiotis red vapour iffues from it; and the green and blue colour of it entirely vanifhes.

Nitrous acid diminiflhes in weight by expofure to the air ; vitriolic
acid increafes in weight. The firf by exhaling ; the latter by attracting moifture from the air.

The end of the tube a, fig. 2, Plate XVII. immerfed in vitriolic acid (when the vapour iffues from it), turns the acid blue. If water be poured upon it and firred, heat, and a copious vapour, arifes of a ftriking appearance.

Marine acid, impregnated with nitrous vapour, is a powerfuI aqua regia, that will diffolve gold without heat; and nitrous ether is made by impregnating fpirit of wine with nitrous vapour.

Red-lead, ftuck by moifture to the fide of a phial, is heated, increafed in weight, and turned white, by the admiffion of nitrous vapour.

The fuperabundant quantity of fire in nitrous air immediately quits it, on being united with common air; i. e. an equality is reftored between them.

Nitrous air diminifhes none but refpirable air.
The nitrous acid that enters into the copper, when diffolving, is fix times as much as enters into the nitrous air produced by the folution.

Nitrous air, imbibed by water, is expelled by heat, as well as by freezing: in the latter cafe it depofits a fediment.

Nitrous air is fatal to plants.

So ftrong is the attraction of water to the nitrous acid, that it will draw it through the bladder containing nitrous air: what nitrous air remains in the bladder will become refpirable; and the water, on which the bladder floated, will become acid.

No air can be procured from concentrated nitrous acid and metals. Water is indifpenfable, and a conftituent part of all airs.

Nitrous Oxyd of Azote is a gas that affects thofe who breathe it with intoxication and madnefs! It is produced by diffolving falammoniac in water to faturation; then adding nitrous acid, alfo to faturation; the liquor is then evaporated over a flow fire, till it approaches to the water of cryftallization, when long needle-like cryftals will appear: the fe cryftals when dry are put in a cranenecked retort, and diftilled over an Argand's lamp into the common pneumatic apparatus, as ufual. This fingular gas may be breathed by a fyphon-tube being ftopt with the thumb, and put into the containing veffel : two or three infpirations will be fufficient to excite laughter, delirium, dancing, \&c. for a few moments, without the general confequence of languor and debility.

Facts refpecting Vital Air.-About one third of the mafs of the atmofphere is underftood to be vital, or fuch air as will fupport flame and animal life. It may be extracted by heat from nitre, from alum, from precipitate per \mathcal{S}, from minium, from manganefe, and from lapis calaminaris. It is found in the bladders of fea-weed, and in frefh and falt water. It is produced by green vegetables, and green matter, inverted in veffels of water, expofed to light; for in darknefs vegetables fo circumftanced give out only the fixt air they originally drew in as nutrition ; but light becoming a coniti-
tuent part of all vegetables, by the vital affinity they have to $i t$, is elaborated with the air into the confitution of leaves and fruit ; and when given out by them, is found to have derived from light the principle of fupporting life and flame.

Nitrous acid produces vital air from all metallic, and other earths: heat produces it from green, blue, and white vitriols; and vitriolic acid, from minium, or red-lead.

The moft refractory ores and metals can be fufed by charcoal, burnt in vital air. Iron burns in it with a brilliancy too dazzling for the human eye. It enters into the calces, or oxyds, of metals fufed in it, making them heavier than the metals themfelves; which oxyds will give out that air again in its original purity, when urged by heat, or the acids. It is only the vital part of any air that is capable of being diminifhed by means of nitrous air.

Two fimilar animals, inclofed in two veffels of the fame fize, one filled with vital, and the other with common air, will live a length of time in proportion to the purity of thofe airs ; i. e. if in the common air there be but one third of it vital air, and the animal inclofed in that air fhall live an hour, the animal in the vital air will live three hours, \&c.

Facts relating to Inflammable Air.-This fingular air confifts of fire and water, fixed by an earth. It may be expelled from metals by the heat of a large lens in vacuo, or when confined by quickfilver, without the intervention of water, except what is contained in all metals, and may be confidered as the neareft approach to elementary fixed fire of any principle in nature.

Diluted vitriolic acid expels this inflammable principle from iron and fteel, by feizing the earth of the metal, and forming with it a falt or calx, confifing of the acid of the vitriol, the earth of the metal, and water for cryftallization ; while the fire of the metal and of the acid becoming aclive, heats the water into fteam, thereby qualifying it to unite with the fire and part of the earth of the metal, in the character of permanent inflammable air. The new doctrine would prove this air, or hydrogen gas, to be produced by water. Reafons have already been given for metals affording its principal ingredient. That water is a conflituent part of it, and all other airs, I hope has been proved; as well as how water is produced by the burning inflammable with other airs.

This air is procured from regulus of antimony by marine acid; from metals, by mineral and vegetable acids; but from copper and lead, better by the marine acid. It is alfo procured by taking the electric fpark in oil, in fpirit of wine, and in volatile fal ammoniac; if the fame fparks be taken in alkaline air, its quantity will be three or four times increafed. Animal and vegetable fubftances yield inflammable air by putrefaction; and it rifes fpontaneoully from the mud of fagnant pools or ditches, where animal and vegetable matters are in a ftate of putrefcence. It is yielded by diftillation from vegetable earths, in quantity proportionate to its fertility : oil of turpentine, coals, wood, and all inflammable matters, yield it by diftillation.

A few drops of ether in a blown bladder renders that air inflammable; and when common air paffes through the flaine of the oil of turpentine, it becomes inflammable; fee fig. 6, Plate XVII.: for if the receiver c be exhaufted, and the flame of the oil be held
to the pipe a, when the cock d is opened, the air will rufh through the flame, and carry along with it a quantity of unconfumed oil, which will render the air in c inflammable.

Air pent up in the hollows and crevices of coal mines imbibes inflammation from that foffil. This air, though ftagnant, retains its natural elaficity, and therefore, when the outward air becomes light, by the caufes already mentioned, this air will fpring from its imprifomment into the mine, more elaftic from its acquired fire. Hence the poor miner fhall one day take his candle with impunity to the clofeft receffes of the mine, and the next, the air will take fire like a train of gunpowder, and with hideous explofions blow up both him and the mine. The barometer fhould therefore be confulted before a candle is taken into a mine liable to fuch baleful damps, as they are called.

Inflammable air, mixed with fixed air, burns with a blue flame ; with nitrous air it burns with a green flame ; but when mixed with an equal quantity of vital air in an air-piftol, its explofive power will difcharge a bullet almoft as forcibly as gunpowder. It is imbibed by water when agitated in it, and may be expelled from it by heat in the fame fate.

Inflammable air is fatal to animals; and infects become benumbed and paralytic in it. It reftores the calces of metals to their metallic fate; for if minium be expofed in it under a glafs receiver, and the focus of a burning-glafs be made to heat the calx, it will begin to imbibe the air, turn yellow, and in time will drink up the whole, and become real lead.

This air refracts the rays of light more than common air, and is eight or ten times lighter.

On Fixed Air.-This wonderful antifeptic has been called aërial acid, fixable air, and now the carbonic acid, as fuppofed to be derived from charcoal and oxygen. Diftilled charcoal certainly produces a gas that has fome qualities in common with that expelled from chalk, and other calcareous matters, as well as that produced by vegetable fermentation : but though thefe have been all called by the general name of fixed air, they each poffefs peculiar qualities, very different from each other.

Fixed air is heavier than common air; is a weak acid; but capable of holding various falts together, by its affinity to their alkaline bafes. It is a conftituent part of chalk, marble, limetone, fhells, \&cc. but eafily expelled from them by heat, or ftronger acids. Hence the vitriolic acid drives out the fixed air from thefe fubftances; fo does the fire of the lime-kiln ; and leaves the earthy bafes cauftic, greedy, and rapacious, to tear fixed air from any thing that contains it; diffolving animal and vegetable fubftances, and rendering acrid falts mild (for falts that are duly faturated with fixed air are faid to be mild; and thofe that have an affinity to fixed air without being poffeffed of it, are faid to be cauflic). It is contained in falt of wormwood, in Glauber's falts, in alum, in vitriolated tartar, from all which it can be expelled by the acids. Nitrous acid expels it from wood and coal-a hes; fo that a vegetable phoenix may be faid to arife from thofe afhes: for as the nilus of nitre is fpread over the earth, and its acid may be made volatile by the heat of the fun, may not this acid attach itfelf to this refiduum of fire, and form with it a fixed air, that (from its fuperior weight)
will fall down to the roots of plants, and become their principal nutrition? and thence have a refurrection from a caput mortuum to vegetable and animal life? As an acid, one meafure of fixed air will faturate three meafures of alkaline air, and will turn red-rofe leaves white. It is fatal to vegetables in air and water, but falubrious in earth; not foon fatal to infects. Water impregnated with fixed air kills fifhes.

Water has a ftrong affinity to this air; it imbibes it almoft in its paffage through it; and thence acquires the acidulous tafte, the fparkling appearance, and medical qualities, of the Pyrmont and Spa waters; and when made in the following manner, as exhibited in fig. 3, Plate XVII. may be made much ftronger, and in large quantities. a is a barrel fufpended on the pillars c and d : in the head of the barrel, n, there is a focket of brafs or iron, into which the fixed and hollow axle o exactly fits; fo the barrel turns upon it. The bottle x contains the chalk, and diluted vitriol, which may be inferted or replenifhed through the ftopple $p: z$ is cylindrical bellows, made of varnifhed leather, very clofe, and on which the weight s may be occafionally laid. When the cock o is fhut, and the effervefcence is going on in the bottle x, the bellows will fill. If the barrel a be nearly filled with water, the cock o be opened, the barrel fwiftly turned by the handle g, and the weights laid on z, to force the fixed air into the barrel, the water in it will become ftrongly impregnated. By this means any quantity of water may be medicated with fmall labour and expence; and when quickly bottled, and well corked, will continue good many months.

There are many methods of impregnating water with fixed air ; but without ftrong agitation the water never becomes fufficiently faturated.

The antifeptic properties of this air and medicated water are numerous and remarkable. The faline draught is falubrious, by difcharging fixed air in the flomach. Sugar, malt, preferved vegetables, \&cc. boiled, and in a ftate of fermentation, given to patients in the fea fcurvy, have reftored and preferved men in health even in a voyage round the world. The medicated water, mixed with tartar, has, in many inftances, diffolved the ftone in the bladder. Inflammation in the bowels has been cured by a clyfter of fixed air. Chilblains, and legs in the firft ftages of a mortification, have been cured by being inclofed in bladders fupplied from bottles containing chalk and diluted vitriolic acid. Fixed air, mixed with inflammable air (hydro carbonate), has been breathed with common air in confumptive cafes with great advantage, and has operated as a ftyptic in the lungs in cafes of a ruptured blood veffel; though fixed air alone irritates the lungs, and cannot be breathed. Inflamed nipples have been cured by forcing the air upon the part. So powerfully does it refift putrefaction, that a piece of mutton, hermetically fealed up in fixed air, has preferved its texture and appearance above twenty years. Fixed air extinguifhes a candle; and even a train of gunpowder, leading into the grotto del Cano near Naples, was extinguifhed on entering the part where the heavy fixed air lies. A candle will not burn under the clothes when a perfon has been for fome time warm in bed, nor in common air that has been breathed. To blow through a bent tube of glafs, containing a little lime-water, will revive the limeftone; the water turns turbid, and the ftone is precipitated. Lime-water is therefore a teft of fixed air being a part in any air to which the water is expofed. As both breathing aind heat, therefore, expel a quantity of fixt air from the human body, it is reftored by a due mixture of animal and vegetable food, which, going into a ftate of fermentation in the fomach, generates a quan-
tity there; and the moifture of the fomach imbibes, and carries it into circulation. Hence the fea fcurvy derives it greateft malignance from the want of vegetables.

This gas is difcharged in large quantities by fermenting liquors; it is generated in coal-mines, and called the choak damp. It is alfo found in wells that have been long fhut up, in both which it has proved fatal to perfons immerfed in them. It is equally dangerous in rooms where charcoal is burnt without a chimney.

On Marine Acid Air.-This air is procured by diftillation from marine acid; and from common falt and vitriolic acid, through quickfilver. The pond of mercury, through which fuch experiments are made, is generally in a piece of folid wood, hollowed as fig. 7 , Plate XVII. The cavity a, in the top of the pond, is the fame as c, feen in a profile. This hollow is filled with quickfilver, and fpreads thinly over the fpace $d d$; fo that fuch receivers as w may be filled in the hollow part c, and placed inverted on the fpace $d d$. The bottle s being three fourths filled with table falt, and a hole, n, made in the falt with a pointed ftick; if this hole be filled with vifriolic acid, a brifk effervefcence will enfue, and marine acid air will rife through its crane ftopple x, and expel the quickfilver in w. A lighted candle held under the botile s, will accelerate the difclarge of air. An equal quantity of alkaline air being put to this, both inftantly difappear as air; and fal-ammoniac is produced. Water abforbs this air, and the union produces marine acid. This air extinguifhes a candle with a blue flane. It diffolves iron, fulphur, and nitre. It diffolves ice; makes camphor fluid, aịd blue vitriol green. In fhort, it is but the marine acid in a fiate of permanent vapour.

On Alkaline Air.-This air is generally expelled by a candle from the bottles, fig. 7 , Plate XVII. filled one fourth with pounded falammoniac, and three fourths with quick lime mixed : it is, in reality, but volatile alkali in the form of air; mild when mixed with fixt air, but common fal-ammoniac when united with marine acid dir.

We have noticed that the electric fpark taken in alkaline air, turns it into inflammable air, and increafes its quantity three times.

As an alkali, it is abforbed by acid airs in this proportion.
By fluor acid air, twice its quantity.
By vitriolic acid air, ditto.
By marine air, and by fixt air, about an equal quantity.
On Fluor Acid Air.-This air is procured by diffolving pounded fluor (Derbythire fpar) in hot vitriolic acid; or by juf covering the fpar with the acid in the bottle s, fig. 7, Plate XVII. a id expelling the air, by a candle, throug' quickfilver into the receiver iv. Tins air has the property of diffolving glafs, and will etch it like a cop -per-plate, if the plate, or jar, be firlt covered with a thin coat of molten bees-wax on both fides, and when cold, engraven with the point of a needle on one fide; fo prepared it thould be put in the box a, fig. 8 , Plate XVII. This box is about eighteen inches by fixteen, lined with theet-lead, having a lid n, and a double bottom x, to diftribute the gas equally among the pieces to beetched, which are placed properly for that purpofe within the box. About a wine-glafsful of bruifed fpar is then put in the fone retort s, and as much vitriolic acid as will cover the fpar. The leaden pipe r is then luted upon the neck of the retort, and into the falle botton of
the box a, of fuch a length that the wax on the glafs, within the box, may be in no danger of melting by the fire \boldsymbol{z}. This fire may be very gentle, for a fmall heat will expel the gas; and the more equally and flowly it flows among the pieces to be etched, the more perfect will be the effect. Cyphers, arms, foliage, landfcapes, or writing, will be completely etched by the gas in two or three hours, or furniture, window, or other glafs.

The jar w, fig. 7, Plate XVII. being filled with fluor acid air, and removed out of the quickfilver into water (by placing a finall veffel under its bottom), the water will feize the acid, and abforb the air; while the earth of the fpar, and the filiceous matter diffolved from the glafs, will be precipitated in flakes through the water.

From thefe details, it is eafy to conceive how very various the atmofphere muft be over the different foils and climates of the earth; and how far this variety is capable of being imitated, improved, or contaminated, by the means of art. Thofe airs capable of being produced by ordinary heat, no doubt are mixed and diffufed through the general mafs of the atmofphere; and where that heat is greater, and the exterior products of nature more volatile, as in the torrid zone, the variety and changes muft be very great and different to thofe of the more temperate climates: yet in all, the atmofphere may be conceived as made up of the finer particles of terreftrial matter diffolved in folar fire: and art has inftructed us what parts of matter are the moft fufceptible of becoming atmofpheric; viz. water ; calces of metals ; metals themfelves in certain circumftances; volcanos ; calcareous earths ; acids; alkalis ; falts ; flowers,
and leaves of vegetables ; artificial fires; many effects of arts and manufactories; animal and vegetable fermentation, putrefaction, \&cc.

SECTION II.

On Winds.

A WIND is air in motion ; its caufe is partial heats and partial colds on the earth and in the atmofphere; for heat rarefying the air, makes it occupy a greater fpace, and therefore to be bulk for bulk lighter than colder air; and a heavier part of the fluid will always tend towards, mix with, or difplace a lighter. Hence a large fire in a room will always caufe a buzzing at the key-holes and crevices of the room ; for the air over the fire being heated, the pillar of air, of which the chimney is a part, will be lighter than the pillars at a diftance, and therefore the heavy air will rufh through thofe obftructions, and protuce a wind in miniature : thus fire becomes an ufeful ventilator, and treats the room with perpetual frefh air.

In going out of a great city in winter, a wind is always met in every point of the compafs; for the heat of fo many fires, people, and animals, making the air fo much hotter than in the neighb surhood, the country air rufhes in at the exterior ftreets, bringing its falubrious qualities along with it, and buoying up the light and contaminated air into the upper regions of the atmofphere, to mix with the general mafs.

The more extenfive winds owe their origin to the fun ; for fandy, loomy earths receive from the fun, and deliver to the air, more heat than water, fwampy bogs, woods, or cultivated lands do. Clouds and fogs often obitruct the rays of the fun, and abforbing their heat, reduce them to a latent fate. Many fubftances on the carth's furface having a ftrong affinity to light, imbibe and render it latent. Thefe caufes keep the air in a ftate of perpetual fluctuation. Befides, as tranfparent mediums, fuch as clear air, clear water, clear glafs, \&c. fuffer light to pafs through them, they receive little or no heat from folar light; infomuch that the opaque earth, receiving its heat from the fun, imparts it to the contiguous air: and hence the air is warmeft near the earth, and grows colder and colder the higher we afcend in it.

The day breeze from the fea towards and over the land, and the night breeze from the land to the fea, in the torrid zone, are accounted for from thefe principles. The land heats the air, and the cold fea breeze, pouring on the land, buoys up the heated air into the upper part of the atmofphere. Let a, fig. 9 , Plate \AA VII. reprefent an ifland in the torrid zone, with the winds blowing upon it from the fea, in the direction of the furrounding darts: thofe winds meeting in the centre of the ifland at a, in oppofite directions, will neceffarily fo accumulate at a, as to rife above the common level of the neighbouring part of the atmofphere. 'This will continue while the fum is up; but on his fetting, the catfe ceanng, this protuberance will naturally defcend to the level, and prefling out from the land, will caule the night breeze, which always lets from the land upon the fea.

That part of the coaft of Africa within the torrid zone has (like
many others fo fituated) its day and night breeze, which reaches a confiderable way from the fhore (fee fig. 10, Plate XVII.) ; but the fea breeze being from the weft, as a, a, a, while the trade winds blow from the caft, as c, c, c, a chafin takes place between them, x, x, x, where the air becomes fo rarefied, and, of courfe, fo difpofed to let go the water diffolved in it, that this intermedium becomes liable to perpetual calms, rain, and lightning. Irregularities in this intermedium caufe the harmatan, a foggy, hot, deffructive wind, blowing from the interior part of Africa towards the fea, three or four times in a feafon, and continuing fometimes feveral days. For when hurricanes take place in the Weft Indies, or extraordinary rarefactions or heats in South America, the trade wind will increafe, to reftore an equilibrium, and draw the intermedium, x, x, x, more out at fea, or to the weftward: this will render the fea breeze, a, a, a, tame and weak upon the African fhore, and the interior air will flow towards that fhore, to preferve a level.

The trade winds blow from the eaft towards the weft, for thirty degrees on each fide of the equator, acrofs the Atlantic and Pacific Oceans; inclining a little towards the N.W. when the fun is near the tropic of Cancer, and towards the S. W. when the fun is on, or near, the tropic of Capricorn. Thus following the fun, it is evident the fun is the caufe; for though perfectly tranfparent mediums do not receive heat from folar light, the fea is feldom in that fate, or even the air; and, therefore, both will be warmed by the fun in his paffage from eaft to weft; not only on the parallel over which he paffes, but a confiderable diffance to the north and fouth of it ; fo that the colder air following the warmer, will make a continual
current from eaft towards the weft, over the torrid parts of the Atlantic and Pacific Ocean.

Another hypothefis refpecting the trade wind is, that, as the air is very thin, or in a greatly rarefied ftate, by the heat of the fun, in the torrid zone, the earth, turning on its axis from weft to eaff, will leave this light air behind; fo that, in refpect to the earth's furface, this air muft feem to move the contrary way, or from eaft to weft. But certainly, in the courfe of a fhort time after the earth began its diurnal motion (as the air is held faft to the earth by the power of its attraction), this air would acquire the fame motion as the earth, and then they muft move together.

The $\sqrt{2}$ occo is a fouth wind blowing over the fandy deferts of Barbary and Tripoli, and over the Mediterranean. Thofe fands receive fuch a degree of heat from the fun, and impart fo much of it to the air, as to qualify that air to take up more water in folution than almoft any other; hence the furface of the Mediterranean is lowered, and occafions a perpetual current, or influx, at the Straits of Gibraltar ; and the hot air becomes fo loaded with vapour, by the time it arrives in Italy and Greece, as to be fuffocating, oppreffive, and almoft intolerable to the inhabitants of thofe countries. Winds blowing from the fea are always moift, bringing, like the firocco, copious exhalations with them: but winds from a continent are always dry ; warm in fummer, and cold in winter.

The caufe of a N. E. wind, as well as its exceffive cold, is a north wind fetting fouth over evaporating ice, to reftore equality with the warmer fouth : but being turned out of its fouth direction by the fieifter motion of thofe regions of the earth it paffes over
eaftward, it acquires obliquity, and flows from the N. E.-S. W. winds are warm, becaufe they are fouth winds turned out of their northern direction by the rotation of the earth on its axis (as before); and directed towards the N. E. becaufe they arrive at a part of the earth's furface which moves Rower than the furface nearer the equator from whence they came, and of which they had previoufly acquired the velocity.

Air near the freezing point loaded with moifture, gives greater fenfation of cold than any other air, by the evaporation of little affemblages of water on the fkin.

We often fee one tier of clouds moving one way, and another tier moving under them in a contrary direction. A fudden rarefaction in any place will caufe the neighbouring cold and heavy air to rufh into that place with fuch rapidity, as to difplace, or drive up, the hot air without cooling it: but that rapidity will occafion a rarity behind it, to which the light difplaced air will have a natural tendency, to reftore an equilibrium, and two currents of air will be then feen moving in contrary directions. This effect may be feen in an hot room, by opening a door into a cold one; for if a candle be held near the top of the door, the flame will be forced out of the hot room into the cold one ; but if placed at the bottom of the door, the flame will be forced into the hot room. Heated air always forms a ftratum at the ceiling of a room; which, by its greater clafticity, preffes out at the top of the door; while the heavy cold air preffes in at the bottom to reftore the balance. Hence the fuperior wholefomenefs of breathing in high, rather than low, rooms: for when we infpire or draw in the air, it flows radiantly from the general mafs to the mouth and noftriis in the direction of the darts,
as a, fig. 11, Plate XVII.: but when we expire, or eject the air from the mouth and noftrils, the heat it has acquired in the lungs makes it lighter than the air into which it is ejected, fo that it is buoyed up into the upper part of the room, out of the way of being breathed again, as the darts iffue from d.

The monfoons are periodical winds affecting the ocean to the fouthward of Arabia, Perfia, India, \&c. which countries are fubject to exceffive heats, when the fun is north of the line, and nearly vertical to them; the winds, therefore, fet from the fouth-weft along the eaft coaft of Africa, and up the Bay of Bengal, from the month of April to the latter end of September, obeying that influence. But from October to April, when the fun paffes over the meridians of the above places, and fhines only on a vaft fea, without land to receive his heat, and impart it to the air, that air will be heavier and colder than the air over Borneo, Java, New Holland, and the Molucca Iflands ; and, therefore, will flow towards thofe iflands, making a monfoon from the north-weft towards the foutheaft, fouth of Cape Comorin; and from the north-eaft to the fouth-weft in the Bay of Bengal, and along the eaft coaft of Arabia and Africa ; becaufe the heated parts of Africa, over which the fun paffes, and the cold occafioned by the fnows on the mountains to the north of India, form fuch a difparity, that the colder and heavier air rufhes towards the warmer and lighter, according to the bearings of thofe countries, viz. from the north-eaft to the fouth-weft.

The force of wind is nearly as the fquare of the velocity, i. e. if on a fquare board, expofed to a wind, there be a preffiure of one pound, if another wind has double the velocity, it will prefs the
board with a force equal to four pounds, \&c. Or if a body moving through ftill air be refifted with a force equal to one pound, if that body move twice as faft, it will be four times as much refifted, \&cc. Wind, therefore, that travels
1.47 feet in one fecond of time, is hardly perceptible.
${ }^{2.93}$ 4.4 $\}$ juft perceptible.
$4.4\}$
$\left.\begin{array}{l}5.87 \\ 7.33\end{array}\right\}$ gentle pleafant wind.

$\left.\begin{array}{l}44.0 \\ 51.34\end{array}\right\}$ high wind.
$\left.\begin{array}{l}58.68 \\ 66 .\end{array}\right\}$ very high.
73.35 a ftorm, or tempert.
88. a great ftorm.
117.3^{6} an hurricane.
Bodies falling through the air are accelerated in their defcent, till the refiftance of the air becomes equal to the momentum, or moving force of the body, and then its motion will increafe no longer, but it will move on with an equal velocity. For fo much does the refiftance of the air retard the motion of bodies, moving through it with confiderable velocity, that cannon balls, which can only be projected two or three miles, by the power of gunpowder, would fly twenty or thirty in vacuo. By the motion of a cannon ball, the air becomes greatly compreffed before it, and rarefied behind it, informuch, that a mift may be feen preceding the ball.

Winds paffing over the furface of water plough up the latter into waves; for air and water have fuch an affinity to one another, that
they unite both chemically and mechanically with each other; water being abforbed into the air, and air into water ; both which, as before obferved, may be detected by the air-pump. When a mafs of air, therefore, preffes on the furface of a body of water, they combine, link as it were together; and hence air never paffes fwiftly over water, but it harrows up its furface into waves. Infomuch that a pretty ftrong wind blowing up a ftraight canal of four miles in length, will raife the water four inches higher at the lee end, than at the windward end of the canal. But if any intermediate matter could be interpofed between the air and water, that would interrupt that affinity, or fuffer the air to flide over water without mechanical friction, or chemical attraction, waves might be prevented, or ftilled when raifed. Oil, and faponaceous matter, has that affect; for if, on the windward fide of a pond, a cruet of oil be poured when the pond is in a ftate of ligh agitation by wind, the repulfion betwcen oil and water (or the abundant fire contained in the firft more than the latter) will fpread the oil like a fine fkin over the whole pond in a few feconds. This ftratum fuffers the air to flide over the furface of the water with fuch fmoothnefs, that the wind ferves to beat down the waves inftead of raifing them. Hence fhips have been faved by ftaving a caik of oil on entering a fhallow harbour in a ftorm. The firong repellency of oil and water is beautifully exemplified in the manufactory of marble, paper, and other wares, where colours and oil, mixed very thin, are fpread by a pallet-knife on water, and ftirred ; paper, duly prepared, will aborb the oil and colour in the fame ftriated form in which it lay on the water. When oil is dropt on water, it in fantly. fpreads in circular prifmatic colours ; its motion agitates fmall bits of paper ; and a conical piece of paper foaked in oil, when placed on clean water, moves whimfically round. As obferved before, a
fubtil effluvium ilfues from all bodies fuperabundantly poffeffed of fire, as is the cafe with inflammable oils, which effluvium receives fuch reaction from the water as puts light bodies in motion.

If a tumbler glafs be fuifpended by a ftring, and half filled with water, and is made to fwing like a pendulum, the water will remain fill, keeping its furface always perpendicular to the ftring. The fame effect takes place when the tumbler is half filled with oil. But when oil is poured on the water, and continues fwinging, the furface of the oil will remain level, and perpendicular to the ftring, while the water below, will undulate fo as to keep its furface always tending towards a level with the horizon, and fwell like the waves of the fea. This ftriking experiment has been varioufly explained; it has generally been thought to arife from the different fpecific gravities of the two fluids: but when quickfilver and water are made to fwing to and fro, no fuch undulation takes place! the furfaces of both keep parallel, and both perpendicular to the ftring. This may perhaps arife from the too great difference of fpecific gravity between quickfilver and water ; and the above effect may only take place between fluids that are not very different in their fipecific gravity.

The air-gun derives its power from the elaftic force of compreffed air. A ball, a, of caft-fteel, fig. 12, Plate XVII. having a conical valve that opens inward, and which is kept clofe fhut by the fpiral wire-fpring c, air tight, is fcrewed at n upon the forcing fyringe s : this fyringe has a folid pifton r, which can be drawn below the hole \approx, by placing the feet on the crofs-bar m, and pulling by the two handles $y y$: the air will then fill the fyringe through the hole z. If then the pifton be forced to the top of the fyringe, it will drive
the air up before it into the ball a, which the valve c will keep there. Thefe flrokes repeated twenty or thirty times, will make the air within the ball ten or twelve times as denfe as the common air, and to have the force of gunpowder. The ball now taken from the fyringe, and fcrewed under the gun, fig. 19, Plate XVII. will difcharge twenty balls fucceffively; for a pin o goes through the barrel of the gun, and terminates on the conical valve above mentioned ; and the lock of the gun being cocked by the hook s, is difcharged upon the pin o, by pulling at the trigger: the pin pufhes open the conical valve, and lets out a fimall portion of air, but enough to force a ball through an inch board at thirty yards diftance. This may be repeated twenty times with the fame charge, and almoft with the fame force.

The magazine wind-giul is ftill a more formidable inftrument. It contains a magazine of balls, fhut up in the ferpentine tube a, fig. 1, Plate XVIII. This tube has a continuation through the cylinder $c c$; which cylinder goes through and acrofs the barrel of the gun, the end of which can only be feen in the drawing. This cylinder is of folid brafs, and can be turned by the hammer m, fo as to coincide with the magazine; and if the gun be held perpendicularly, the ball s will fall into the cavity 0 , where it will be fopt by two fmall and flender fprings feen at 0 . If now the pan be opened, the hammer will be in the fame pofition as in the drawing, and the ball \boldsymbol{z} will be in the barrel of the gun, ready to be difcharged. This gun has its charging fyringe in its butt; k is its pifton; this being drawn below the hole u, the fyringe will become filled with air, which, by pufhing the gun downwards, will be forced through the valve b into the outward barrel of the gun, A A; which is to hold the condenfed air: twenty or thirty ftrokes will charge the
gun, and qualify it to difcharge the magazine of balls one after another, as faft as the gun can be cocked, and the pan opened. The communication between the inner and the outer barrel is made by the valve x, which is conical, and preffed down by the long fpring g, fo as to keep the gun ready charged for feveral months. The cock of the gun is united with the piece c; which, when pulled back, or cocked, preffes down the ftrong fpring q, and the catch r keeps it in that pofition, till the trigger t difengages it; the lever $\%$ being, by this means, fuddenly ftruck againft the pin that is faftened to the valve x, opens it temporarily, and a portion of the condenfed air rufhes out behind the ball z, and difcharges it with the force of gunpowder. By thefe devices may twelve balls be difcharged in fucceffion in as many feconds. It is obfervable, however, that if one of thofe guns be kept charged for feveral months, the air will lofe much of its force and elafticity. The latent fire of the air is fqueezed out by its compreffion, as may be felt by the ball of the air-gun growing warm while it is charging, fo that the air within having loft much of that which gave it elafticity, coalefces into an inert fluid in time.

SECTION III.

On Sound.

ALL elaftic folids, or fluids, are conductors of found. The air is one of the moft elaftic fluids in nature; and, therefore, pervading all places in and upon the earth, it is the moft proper medium for
conveying auricular intelligence from one creature to another. As fire is a conflituent principle in moft parts of folid and fluid nature, particularly in thofe parts fufceptible of found and vibration; and as thofe bodies that fhew the leaft figns of poffeffing fire, fuffer founds to pafs through them with the mof difficulty, as marble, chalk, and other incombuftible fubftances, it is natural to conclude, that fire is the univerfal caufe of the elafticity in all vibrating, or fonorous bodies. If my hand moves fwiftly through the air, the air will be driven into a condenfed fate before my hand, and into a rarefied fate behind it ; but it will make no found, and foon reftore itfelf to an equality : the motion of a mufical ftring does the fame; it condenfes the air before the ftroke, and rarefies it behind ; but fo fiviftly do the impulfes fucceed one another, that the air is forced into fucceffive waves that emanate from the ftring globularly, and travel at the rate of 114^{2} feet in one fecond of time. This is eafily effimated by feeing and hearing a gun fired in the night, at 1142 feet diffance, when the light would be feen one fecond fooner than the report would be heard. Thefe waves from a ftring, or bell, may be better underftood from fig. a, Plate XVIII. where the firing vibrates from a, \&cc. When any obftruction meets thefe waves, they rebound back and produce echo; fometimes perpendicularly, and fometimes obliquely: when the waves ftrike inclined upon a reflecting furface, then may the echo be heard, and not the original found, as fig. 3, Plate XVIII. where the direction of the wave $a c$ being againf the oblique wall d, the found will be reflected to an ear fituated at m; and if a hill fhould lie between the bell at a, and the ear at m, then will the echo be heard at m, and not the original found of the bell. If the head r ftands oppofite to the rock s, and repeats I, $2,9,4,5,6$; and the word $/ i x$ gets out of its mouth before the word one returns to its ear, as in the fig. 4 ,

Plate XVIII. it will hear the whole fix fyllables diftinctly repeated. But if it be too near the rock, the word one will return before the word fix leaves the mouth, and then the echo will be confufed: if the diftance is fufficiently increafed, not only fix, but even twelve, fyllables, will be repeated by the echo.

The remarkable echo in the dome of St. Paul's church, depends on the fame principles. If an ear be placed diametrically oppofite to a mouth (in what is called the Whifpering Gallery), though many yards diftant, the fmalleft whifper will be diftinctly heard. Fig. 5, Plate XVIII: The natural or rectilinear found will pafs acrofs the dome from a to b. The waves that pafs from a to d, impinging upon d, will, according to the angle of incidence and reflection (fee Optics), be reflected to the ear at b : and the waves that frike the dome at c will be reflected to d, and from d to c, and from e to the ear at b. So it will be with all the aliquot, or even, divifions of the femi-circle a, c, d, e, b; as well as the other half, a, g, b; fo that it may be faid that not an atom of any wave that ftrikes the wall is loft, but that they all affemble at the ear b; confequently the fenfation is as if the mouth and ear were clofe together. But if the ear and mouth are not diametrically oppofite, the words will be heard double; for one arch being lefs than the other, the found will arrive at the ear fooner round the fhorter arch than the longer.

Water is an excellent conductor of found, and greatly affifts echo. The remarkable echo of Simonetta, near Milan, is over arcades of water. Another, near Rouen, is over fubterraneous caverns of water. In calm weather a whifper may be heard acrofs the Thames.

Sound is capable of being condenfed in a tube, or fpeaking trumpet, fo as to penetrate through the air to a great diftance, in one line. For all the waves that fly off globularly from a founding body, are by this trumpet condenfed into one line, and, therefore, its force becomes great in proportion. The mouth of this trumpet opens (or fhould open) in the logarithmic curve: this curve has the property of reflecting the waves, that ftuggle to difperfe at the mouth of the trumpet, into the axis of the inftrument, as reprefented by the fpotted lines, fig. 6, Plate XVIII. agreeably to the law of the angle of incidence and reflection in Optics. This is the trumpet's effecl both in receiving and delivering found; for waves ftriking the mouth of the trumpet, B , from without, become condenfed in the tube, and ftrike an ear at c with the compreffed force of all the waves that cover the mouth of the trumpet: hence its effect in affifting deafnefs. If two trumpets, as A and B, be placed in the axis of each other (as in the figure) at forty or fifty feet diftance, the fmalleft whifper at a would be heard diftinctly by an ear placed at c; and vice verfa: fo that a perfon might afk a queftion at a, and receive an anfwer from c. The anfwers feemingly given by the fufpended Speaking Figure, is a trick founded on this principle.

Two bodies of air, friking againft each other, produce thunder; for lightning either burfting in, or darting through the air, will feparate it, and caule a vacuum ; fo that the feparated bodies of air coming together, and ftriking progreffively againft each other, caufe the long-reiterated report of thunder: reverberation from clouds, mountains, \&x. allo contribute to this effect. So it is in the report of a gun: flame, by its repulfion, univerfally difplaces the air ; the rarefaction of both air and the moifture produced in firing
gunpowder, contributes to extend the vacuum; hence the quick return of the air into the gun makes it frike the bottom of its barrel with a force capable of producing a loud report; for it muft be remembered, that in proving the particles of air to be hard, a column of air was fuffered (in the firft Lecture) to fall on the plate of an air-pump, which produced as loud a report as that of a common gun. Hence alfo the reafon why an air-gun can farce be heard; for the difplaced air, returning, falls on a cufhion of rarefied air within the barrel.

If a rope be ftretched tight between two points, thirty or forty feet diftant from each other, as a and b, fig. 7, Plate XVIII. and ftruck with a ftick, the whole rope will not vibrate, but feveral ftill places will be feen in it, between which the parts of the rope will vibrate, as from a to c, and from c to d, $\delta c c$. The diftance of thefe fationary places is always an even or an aliquot part of the whole rope; as from a to c is half its length; from b to d, one fourth its length, \&c.

Hence arife the wild and wonderful harmony of the Eolian harp; for though the inftrument may have twenty ftrings, all tuned unifon to one another, yet do we hear not only the natural found of each ftring, but its octave, fifth, third, twelfth, fifteenth, \&c. A current of air is certainly a delicate fiddlebow; it affords a fring (by the equable impulfe upon its whole length) an opportunity of dividing itfelf into a number of imaginary bridges, to which it has a natural tendency. Hence every ftring becomes capable of three, four, and more founds; thus a, b, fig. 8 , Plate XVIII. are the ufual bridges of the ftring a, c, b, from whence the ftring has its natural key: the moft important imaginary bridge is
at d, which is in the middle of the ftring: half the ftring having but half the vis inertice of the whole ftring, will, therefore, vibrate twice as faft as the whole ftring; every fecond wave, therefore, coming in contact with the waves of the original ftring $a b$, gives a pleafing fenfation to the ears, and the union is called an octave. Another bridge takes place at e; the vibration of $a e$ is thrice, while the whole ftring is twice; hence every third wave of $a c$ coincides with every fecond wave of $a b$, and produces the concord called a fifth. The remaining part of the ftring $e b$, being half the length of $a e$, is, of courfe, an octave to $a e$, and a twelfth to the whole ftring $a b$. The part of the ftring $c b$, is feven ninths of the whole ftring, and gives the major third to it, \&c. Thus are the leading notes of the octave capable of being performed by one ftring, or one bell ; fuch is the tendency that motion has to divide itfelf into proportional parts. The artful performer on the violin avails himfelf of this tendency, by gently touching the aliquot parts of a ftring ; by which he affifts nature in forming the bridges, and produces thofe pipe-like tones called harmonics.

The pulfations, or waves, caufed by the quick vibrations of a ftring, or bell, may be further illuftrated by the mechanical fympathy among accordant founds, viz. If two ftrings, on two inftruments, are tuned unifon, and one be ftruck, at feveral yards diftance from the other, that other will reply; for the waves made by the firft ftring being the fame that would be made by the fecond if ftruck, thofe waves give a mechanical ftroke to the fecond, and produce its found.

2d. So in the Eolian harp, if only two of its ftrings are unifon, and a piece of paper be hung on one of them, all the other ftrings
may be ftruck without effect ; but when the unifon ftring is ftruck, the paper is inftantly fhaken off.
3. In like manner, when the dampers are taken from the ftrings of a piano-forte, the inftrument will repeat the key of every word fpoken in the room.

4th. A wet finger preffed round the top of a wine-glafs, will produce its key; or if it be ftruck with a fmall. key, its pitch will be produced. An unifon, or octave, to that pitch being ftrongly excited on a violoncello, the glafs will begin to dance, and, perhaps, be fhaken off the table.

5th. Thofe unacquainted with this mechanical fympathy, are much aftonilhed to fee a loofe pannel in a wainfcot begin to dance in its mortice, when a particular note is produced on an organ ; but if they ftrike the pannel, they will find it unifon, or octave, to that particular note.

6th. This fympathy is not confined to inanimate nature ; a dog will begin to howl at one particular note, when he is totally indifferent to the reft of the feven. May not the dog and other animals have a key, as well as a drum, a tambourin, or a brafs kettle?

7 th. The drum, the cochlea, and labyrinth, of the human ear, abound with fibrous nerves-too delicate and pulpy, indeed, to be capable of tenfion, like a muifical ftring; but they muft have great variety of divifions, as connected with the cochlea; and the cochlea may be confidered as a mufical inftrument. If the interruptions in
thefe nerves be in harmonic intervals (as is more than probable), may not their fympathy with external founds caufe our perception and difcrimination of different founds? and may not the different formation of the cochlea, in different people, be the reafon why fome are bleft with a mufical ear, and others not? The waves of the air are propagated up the meatus auditorius, and give a mechanical ftroke, or impreffion, to the auditory nerves; fo that hearing may be faid to be a fpecies of feeling, as a ftroke, or impreffion, on the eye, produces the fenfation of light.

Every kind of elaftic body is a conductor of found as well as the air. If the ear be held to one end of a long ftick, a beam, or a fallen tree, and the fmalleft fcratch be made at the other end, the fcratch will be diftinctly heard by the ear. But the air is the general conductor of found; it pervades all places, and is therefore moft proper, as being prefent to the ear wherefoever fituated. If a bell, a, fig. 9, Plate XVIII. be hung in a glafs receiver on the air-pump, and the air exhaufted, no found can be heard when the bell is rung: for if it hangs fo that the wire trigger c, acting through the collar of leathers d, can move the pin o (fixed to the top of the bell), the bell may be rung in vacuo as well as in the open air. This experiment proves the air a conductor of found. But if the bell be put in a ftrong glafs to which a forcing fyringe, as fig. 12, Plate XVII. can be applied, and the air be condenfed about it, the bell rung as above will be found to increafe in loudnefs in proportion to the condenfation.

2d. The metallic round box a, fig. 10 , Plate XVIII. is fcrewed clofe to the brafs plate b, on the thread of the collar of leathers c. In the box is contained a little gunpowder, which can be fhoved
over the hole z, by the arm 00 . Thefe arms are actuated by the wire w going through the collar of leathers c; fo that, by being turned round, the gunpowder falls through the hole \boldsymbol{z}, on the redhot iron x. This being performed in vacuo, as in the laft experiment, the inflamed powder makes no noife. But as no flame can be produced without air, it may be afked how gunpowder can be ignited in vacuo? It carries its own air along with it ; for nitre, when heated, produces more than one hundred times its bulk of vital air; and nitre is one of the principal ingredients of gunpowder. Hence the flame at x having no air to difplace around it, the inflammation is filent; but when the air is let into the receiver, a few grains would blow up the box and plate b with a loud noife : that noife would be greatly increafed if the air was condenfed round the hot iron, or the bell, in the former experiment. A bell may be heard under water tolerably well; but its pitch or key will not be the fame as in air; it will be a fourth deeper.

As found travels 1142 feet, or about a quarter of a mile, in a fecond; and as a perfon in health has about 70 pulfations or beats of the artery at the wrift in a minute ; this approaches fo near to a quarter of a mile for every pulfation, that if the flafh of a gun at * fea, in the night, was feen eight pulfations before the report was heard, the fhip may be concluded to be about two miles off.

Spongy bodies, as woollen cloth, abforbs founds; hence mufic or oratory are ill heard behind a number of people.

Different kinds of air produce different founds, though all nearly of the fame loudnefs. Air preffed from a bladder through a finall
pipe into vital air, gives a found half a tone lower than when preffed into atmofpheric air; the fame effect takes place when the pipe founds in azotic air; but when thefe two airs are mixed in the proportions they are faid to bear in the atmofphere, the found is the fame as in the atmofphere. Injected in inflammable air, the found is ten or twelve tones higher; in fixed air, one third lower ; and in different airs not uniformly mixed, intolerably harfh and difcordant. Thefe effects feem to arife from the different weights of thefe airs. For the more denfe the medium that furrounds the founding body, the deeper is the tone; as the tone of a bell-glafs becomes lower the more it is filled with water, or the deeper it is immerfed in it.

(307)

LECTURE VI.

HYDROSTATICS.

THIS branch of natural philofophy treats of the action, the motion, and preffure, of fluids in general ; but the mechanical properties of water is its principal object. By obferving that this fluid is capable of imbibing a large quantity of falt, fugar, \&c. without having its bulk increafed, and that aquatic plants have round pores, it has been imagined that water is formed of round particles, touching one another (and, therefore, incompreffible), but infinitely too fmall to be feen. To make a picture of this idea, the larger balls, fig. 1, Plate XIX. reprefent water, and the fmaller, falts, or other particles that can infinuate themfelves into the pores, or interftices, of the bigger balls. This idea is a little ftrengthened by the different characters of water, fuch as mineral waters, medicinal waters, and fuch as imbibe the fine particles of fones in the bowels of the earth, and the particles of air from the atmofphere; fript of thefe, we find the fimple clement the fame in all parts of the world; and, therefore, it muft derive its various characters from particles taken into its pores, or interfices. One principle, however, we are fure is united with it, and that is light, or fire, but not fo as to be obvious to our fenfes; it gives it fluidity,
and, without increafing its bulk, refifts the cohefion of its particles: hence the eafe with which they flide over one another, in the fluid ftate, and the folid form they affume when fire is detached from them. This eafe with which the particles of water flide over one another, and yield to the lighteft impreffion, conftitutes one of its characteriftics as a fluid ; and is the reafon why its furface is fo liable to be harrowed up into waves. It fhews alfo how they give way, when any light body fwims on their furface; and when in rapid motion how they rife above their level when met by a folid, or any reffifing body; for water is the flave of inertia as well as all other matter. If water, then, can be allowed to be formed of pillars of round particles, we may account for the swimming of lighter bodies in it; thefe bodies prefs down the pillars underneath them, and make the neighbouring ones rife in proportion, till a balance is reftored; fo that if the bed made by the fwimming body was filled with water, that water would be exactly equal in weight to that of the fwimming body. That is to fay, every body that fwims in water, juft difplaces fo much water as is equal to its weight.

I put the fimall model of a boat a, fig. 3, Plate XIX. into the tub A, filled with water up to the cock c; the boat, by its weight, will force a quantity of water through the cock c into the bafon d. If now the boat be put in one fcale of fig. 2, Plate XIX., and the water in d be poured into the other fcale, the water and boat will be found to balance each other.

Or if the ftick a, fig. 4 , Plate XIX. be put in one of the above feales, and balanced with water in the other, and then put eafily into the jar c full of water; the water it difplaces will run over the
top of the jar. If now the ftick be taken out of the water, the vacancy it leaves in the jar will be exactly filled by the water in the fcale.

2d. I tie a piece of bladder (a little flaccid) over the end of the open glafs cylinder c, fig. 5 , Plate XIX. fo that it will hold water, and fill it up to $a b$; I then immerfe it in the veffel $n o$, filled with water to $r s$. If then the furface of the water in the inner cylinder $a b$ be preffed even with the furface $r s$, the bladder will be flaccid, even, and horizontal, as $d e f$. But if the inner cylinder be lifted up, fo that the furface $a b$ fhall be above $r s$, then will the bladder be preffed concave downwards, as $d m f$. If then the furface $a b$ be thruft beneath the furface $r s$, the bladder will be forced convex upwards, as $d w f$. Do not thefe experiments prove that water preffes upward, as forcibly as it weighs downward, according to its perpendicular height? For, when the two furfaces are even, the bladder is neither preffed up nor down; thewing, that there is an agent underneath it, equal in force to the weight of water above the bladder, \&c. This agent is the returning pillars of water, endeavouring to rife to the level of the water in the outer cylinder.

3d. The action of thefe returning pillars may be better underftood by fig. 6, Plate XIX. where a reprefents a glafs cylinder, open at both ends, b a ftring by which a thick piece of lead, m, may be held faft to the bottom of the cylinder: to prevent the water getting in between the lead and the glafs, the lead is firft covered with wet leather. If then (with the cylinder in one hand, and the ftring in the other) the lead and cylinder be plunged in the veffel of water $c d$, to the depth of fix or eight inches, the ftring
may be let go, and the lead will be preffed fo faft to the cylinder, that no water can penetrate between them. What preffes it?-The fhort pillars of particles underneath it, influenced by the tall pillars on and $q g$. Hence it may be feen how lead may fwim, as well as veffels that are fpecifically heavier than water, provided they are fo formed as to difplace as much water as is equal to them in weight. Ships fink when full of water, becaufe they do not in that ftate difplace fo much water as is equal to their weight: when fwimming, they do. But if the cylinder and lead were lifted up as high as $c d$, the lead would fall off, and break the outer jar, if not prevented by the ftring. Shewing that water preffes according to its perpendicular depth, and that in all directions alike; for if the feveral crooked open tubes, fig. 7 , Plate XIX. have their upper end ftopped by the thumb, and immerfed in a jar of water, fo foon as the thumb is removed, the water will inftantly rife in them to the level $a c$. Or if a veffel, fig. 8, Plate XIX. be filled with water, and the orifices a and b (bored with the fame tool) be both opened at the fame inftant, they will difcharge equal quantities in the fame time: proving that water preffes laterally, or fide-wife, as forcibly as downwards, according to its perpendicular height.

4th. The particles of water fliding over each other with fuch exceffive eafe, it is evident that if I ftop the end of the crooked tube, fig. 9, Plate XIX. at a, when full of water, the water will prefs againft my thumb at a, with a force equal to the weight of water contained in the tube between its top b and the level with my thumb c; for the inftant I remove my thumb, the water falls to the level $c a: n a$ may therefore be conceived as one of the returning pillars that preffed the bladder, and fupported the lead in the fecond and third experiments.
$5^{\text {th. But if, inftead of one returning pillar, we make fome thou- }}$ fands, as in the cafe of the hydroftatic bellows, the power becomes exceffive with a fmall quantity of water, fig. 10, Plate XIX. This machine is made of two ftrong round boards united by ftrong leather, in the manner of common bellows, but nailed fo tight to the edges of the boards as to hold water; a is a pipe of any height leading into the infide of the bellows. If water be poured into this pipe, the upper board will foon begin to rife and lift the weight v : and if the pipe was tall, and that board wide enough, it would lift the man who poured in the water. If, when the bellows are full of water, weights were laid on them till the water was forced up to the top of the pipe a, thofe weights would exprefs the weight of a pillar of water whofe bafe was equal to the area of the under-board of the bellows, and whofe height was from that board to the top of the pipe a; which may be better underftood by the fpotted line in the figure. It is evident from what was faid of the laft experiment with the crooked tube $b c n a$, that the returning pillar $n a$ would prefs as forcibly againft the bottom n by reaction as the tall pillar $b n$ by its weight; for the preffure againft the thumb a was equal to the weight of water between b and c, and therefore the reaction of the fhort pillar upon n would be equal to the weight of the tall pillar. This reafoning carried to the bellows will account for the weight they lift; for the water within the bellows is all returning pillars (like $n a$ when the pipe a is full), each endeavouring to rife to the level $e n$, and thrufting againft the lid with a force that would bring them to that level, if they had an opportunity. But if, inftead of the pillar of water eo, acting on the bellows by its weight, that water was forced in by a pifton moving in $e 0$, the bellows, if ftrong enough, would lift a houfe! On this principle a prefs is formed of im-
menfe power. Fig. 10, Plate XIX. a is a ftrong caft-iron cylinder, ground duly circular within $; e$ is a pifton fitting very tight into the cylinder; c is the pifton of a force and a fucking pump, which, by its afcent, draws the water out of the ciftern d through the valve n; by its defcent the valve n fhuts, and the water above it is forced through the valve o into the cylinder a, and drives up the pifton e; this forms a preffure at m, by the force of one man working at s, that fqueezes cotton bags, hay, \&c. into twenty times lefs compafs than they generally occupy. Thus if water can infinuate itfelf but the thicknefs of a fhilling under a bank, dam, \&c. and has communication with a tall pillar of water, the banks of canals are blown up as if a train of gunpowder was fired under them. But if water cannot get in between two furfaces, it will then prefs a light body to the bottom of the containing veffel, and prevent its fwimming. The cork a, fig. 11, Plate XIX. if fixed to an even piece of thin glafs, and laid on the even bottom of the veffel A, it will lie there when the veffel is full of water. Suppofe a, fig. ${ }_{3}$ 3, Plate XIX. a fection of the bed of a river, and c a land-drain under or through one of its banks; compare the tall columns of water $d e$ to the fhort ones in the drain, and it will be eafy to conceive, that if the part of the bank g be not as heavy as the columns $d e$ (as water preffes in all directions alike according to its perpendicular height), that part of the bank will blow up. This effect is prevented by puddling, as it is called ; that is, cutting a trench lengthwife of the ditch, about eighteen inches wide, and a little deeper than the canal, or refervoir, as $n m$; this is filled by a little at a time with clay, or common earth, in a femifluid fate by water; when the firft is nearly dry, a little more is poured in, and fo on till it is filled: this makes ponds, ditches, canals, docks, or refervoirs, as ftaunch as a bottle.

6th. The hydroftatic paradox, as it is called, may alfo help to illuftrate this doctrine. A brafs cylinder, of which $a b$, fig. 14 , Plate XIX. is a fection, has a pifton c, that fits it fo that it can eafily move up and down in the cylinder by the rod d; ef is a cylinder of glafs, cemented into the brafs collar $g b$, and fcrewed on the brafs cylinder. The balance being now applied to the chain part of the rod d, the whole is filled full of water; but as part of the water will be loft at the pifton c, and pafs through the hole q (for the pifion muft not be water-tight, as its friction would hurt any conclufions that could be drawn from the experiment), water muft be kept eafily pouring in, while the column is having its exact weight afcertained in the fcale of the balance. When this is exactly done, the glafs cylinder is unfcrewed from the brafs cylinder, and the conical glafs A fcrewed in its place, fig. 15. Plate XIX.: this glafs is exactly the fame height as the cylinder ef, but will hold ten times as much water: fhould it not then weigh ten times as much on the plug c? -Yes, it would, if it were frozen, for then the whole would be lifted. But the fame weights which lifted the column contained in ef will lift the water in A ; but not all the water: it will lift only the column r st u through the middle of it; or rather a column whofe bafe is the pifton c : the reft of the water in A is fuftained by this pillar and the flanging fide of the conical veffel. In reality, then, there was no more water on the pifton in the fecond than was in the firft experiment. But will it not appear ftill more paradoxical, if the water that cain be contained in the finall pipe B, fig. 16, Plate XIX. fhall form as great a preffure on the pifton c as all the water that was upon it in the laft experiment?-It is even fo. Let the cap $\approx o$ be fcrewed in the place $g h$, and the rod d pafs through the finall tube B; if now it be filled with water, the weights will he overcome, ard
the pifton forced down exactly as in the laft experiments: this is done by the returning pillars within the brafs cylinder $a b$, fig. 14, Plate XIX. preffing againft the lid $\approx a$; for as action and reaction are equal, and contrary, with what force foever the flort pillars prefs againft the lid ≈ 0, they will react with the fame force againft the pifton c. Now thefe fhort pillars are all influenced by the tall pillar of water in B, and would all rife up to the top of B, if not ftopped by the lid ≈ 0, then would they act by their weight inftead of their preffure, as in the firft experiment. This feeming paradox may be further aggravated by irverting the conical veffel A, fig. ${ }_{15}$, Plate XIX. as fig. 17, Plate XIX. ; in which cafe we affirm there is as great a preffure on the bottom $a b$, as would be if the whole cylinder $a b c d$ was filled with water. We muft ftill keep in mind the nature of fluidity ; that its particles flide with the utmoft eafe in all directions accordingly as they are preffed; confider then (as in the laft experiment) the influence the long pillar $b n g e$ will have upon the fhort ones, fuch as $z y$,or, \&cc. ; that thefe will be preffed againft the floping fide with a force that would raife them to the height of the tall pillar, if that fide did not ftop them ; and, confequently, that they will have a reaction againft the bottom equal to the gravity of the tall pillars. The preffure of the water, therefore, differs from its gravity in this refpect : the gravity of water is according to its quantity ; the preflure of water is according to its perpendicular height: this preffure is independent of quantity; a pipe fix feet high, and one inch in diameter, would be as liable to be burft as a cylinder of fix feet high and fix feet diameter, equally ftrong.

7th. This preffure increafing like the acceleration of falling bodies, is a beautiful inftance of that famenefs and fimplicity ob-
fervable through all the laws of nature; it is as the odd numbers 1, 3, 5, 7, 9, 11, \&c. ; that is, if fig. 1, Plate XX. reprefent a tall fquare veffel full of water, five inches deep, and one inch fquare, the preffure againft one of the fides of the topmoft inch will be nearly one ounce; againft the fame quantity of furface below, three ounces; againft the inch below, five ounces, \&cc. Now this is as the fquare of the depth; i.e. againt the two upper furfaces there is a preffure of four; againft three of the upper furfaces there is a preflure of nine; againft four of the uppermoft furfaces there is a preffure of fixteen; and againft the whole front furface, five, there is a preffure of twenty-five; for $9,7,5,3,1$, added together, will make 25 , and five times five is twenty-five. This may be proved by a fimple machine, fig. 2, Plate XX. made of the fame height as the laft. The two pieces of inch-board a and b are mortifed into one another, and have grooves at an inch diftance, to receive two panes of flat window glafs, which are made water tight with putty in the frames a and b. A thin board, c, hangs by two hinges on the corners of the two panes at n, and covers the edges of the panes to the bottom. This board is held to the edges of the two panes by the weight w, and is covered with cloth to hold water. Now as the machine is open at top between n and m, water may be poured in there; and, if one ounce is hung at w, the door c will be forced from the edges of the glafs when the water rifes to the line 1 . If four ounces are hung at w, the door will be opened, and the weight lifted, when the water rifes to the line 2 . If nine ounces be hung at w, the water will prefs off the door when it rifes to the line $3, \& \in$. fhewing that the preffure is as the fquare of the depth; and giving a rule by which may be effimated the preffure of water againft embankments, flood-gates, refervoirs, \&ic. and alfo demonftrating, that if water were twice as
high on one fide of a flood-gate as on the other, the preflure would be four times as great: alfo, that the fide of a ciftern is as forcibly preffed as the gate of a large dock, if the perpendicular height of the water, and the area of the furface preffed againft, be the fame.

8th. Spouting pipes are fubject to the fame law. Pipes of the fame length and bore difcharge water according to the fquare root of the depth beneath the furface; i. e. the pipe b, in fig. 1, Plate XX., will difcharge twice the quantity in the fame time as the pipe a, though bored with the fame inftrument, being four times as far below the furface. One, nine times as far beneath the furface, would difcharge three times as much water, in the fame time, as the pipe a, \&cc. the vefiel being kept full.

9th. The law by which a head of water will force water through pipes of equal bore, at different heights, is another inftance of the mathematical uniformity of nature, Let $a b$, fig. 4, Plate XX. reprefent a tall pillar of water, whofe head at a muft be kept to that level during the experiments. On the middle of this pillar, place one leg of a pair of compaffes, and draw a femicircle, whofe diameter is the height of the pillar of water. It is remarkable that the pipes both above and below the middle will throw water to an horizontal diftance proportionate to the fines of this arch ; i. e. the fine $c d$ is equal to the fine $g b$, and their refpective pipes throw water to the fame diffance. The radius ik may be confidered as the longeft fine of an arch, and its pipe will accordingly throw water to the greateft horizontal diftance of any fimilar pipe that could be fixed in any part of the pillar between a and b. The water being fill kept up to the level of a, if the three pipes n, m,
and 0 , be opened at bottom -0 making an angle with the horizon equal to $22^{\circ} 30^{\prime} ; m$, an angle equal to 45°; and n, equal to $67^{\circ} 30^{\prime}$ -they will each throw water to an height according to their refpective fines; i. e. the pipe o, to b; the pipe m, to k; and the pipe n, to d : their horizontal diftance alfo will exhibit a wonderful conformity: the water that touches the fine $g h$, and that which touches the fine $c d$, fall at the fame place with the waters of the pipes c and g; and that which touches the longeft fine $i k$ fpouts to the greateft diftance, and falls at the fame place with water from the pipe i. Hence a mortar, or great gun, elevated to an angle of 45°, will throw a ball to a greater horizontal diftance than it will in any other angle. This is theoretically true, but not quite practically fo; for wind, a greater or lefs denfity in the air, \&xc. will make a finall difference; and fo it will in the fpouting fluids; the common refiftance of the air making each parabola a little more perpendicular on its right-hand fide than on its left.
10. The refiftance of the air is alfo the reafon why water will not rife fo high in a jet as in a tube. Fig 3, Plate XX. is the laftufed pillar full of water; if a fmall pipe c be opened, the water will rife only to a in the character of a jet, but it will rife to the level d in the tube t; and let that tube be inclined in any angle, the water will rife to the level d, if the tube be long enough ; or, in cafe the pillar was empty, and water was poured into the tube t, the water in the pillar would keep on a level with the water in the tube: fhewing that fluids univerfally will rife to a level, let the pipes of conduct be long, fhort, fquare, round, big, little, or crooked. Why does not fo heavy a body of water as is contained in the pillar force up fo light a body as is contained in the tube higher than the level?-Gravity, and the flexibility of the preffure
in the fluid, accounts for this. If no tube were joined to the pillar, the water would be at reft, and held quiet in it, by the power of gravity; but now we join the tube t to it, and open the ftop-cock e; inftantly the fluid becomes lefs preffed at this opening, than by the fides of the pillar, and the particles fliding over one another with fuch eafe, the weight of the water in the pillar will fqueeze up that in the tube to its level. But why not higher?-Becaufe, in reality, it is but a column of water in the pillar, of the fame thicknefs as the tube, that can operate upon the water in the tube; all the reft of the water is fupported by the bottom of the pillar, and the projecting refervoir at top; fo that it is but the effect of an inverted fyphon, and may be reprefented by an imaginary pillar going through the water, and joining to the tube t, making the fyphon $d e t_{\text {. }}$
11. Water thus rifing to its level, affords us a means of conveying it acrofs valleys without thofe expenfive aqueducts erected by the ancients for that purpofe, whofe ruins remain the wonder of our own times. A pipe, conforming to the fhape of the valley, will anfwer every purpofe of an aqueduct. Suppofe the fpring at a, fig. 5, Plate XX., and I want its water on the other fide of the valley D ; it is evident, from what has juft been proved, that a pipe of lead, or iron, laid from the fpring-head acrofs the valley, will convey the water up to the level of the fpring-head; but, by a furvey, I find the houfe rather lower ; a conftant fleam will, therefore, pour into my cifterns and ponds, as if my houfe were on the other fide of the valley. In this cafe a regard muft be had to the depth of the valley; for as the preffure of water increafes in the rapid ratio of $1,3,5,7,8 \mathrm{c}$. if the valley be deep, the pipes mult be made very ftrong near its bottom, or they will burf.

Of Specific Gravities.]-The fpecific gravity of a body is its weight, when compared with the weight of its bulk of clear rainwater. The fpecific gravity of quickfilver is faid to be fourteen; becaufe a cubical inch of quickfilver, put in one fcale of a balance, would require fourteen cubical inches of water in the other to balance it. So the fpecific gravity of copper is eight, becaufe one cubical inch of copper will balance eight of water. The denfity of bodies, therefore, compofes their fpecific gravity, as may be better exemplified by three cubical inches of wood of different denfity ; one will fwim a-top, another fink to the bottom, and another remain at reft in any part of the water: the firft, then, is faid to be fpecifically lighter ; the fecond, fpecifically heavier ; and the third, of the fame fpecific gravity as water. Water being thus made the ftandard of comparifon, refpecting the denfity of different bodies, a table may be made of the different fubitances in nature compared with water, with one another, and with themfelves. See Table of Specific Gravities, fig. 3, Plate XXIV.

It may be feen in the table, that there is great variety of denfity in bodies that bear the fame name. Glafs, for inftance, is above twice as heavy as its bulk of water; fome three times as heavy; and fome almoft four times. Cobalt has great variety; fome is fix, and fome eight, times as heavy as its bulk of water. Diamonds have no variety ; zinc and lead very little ; fterling gold is feventeen and three quarters heavier than water; and pure gold from nineteen to twenty times heavier.

As one cubit foot of pure water is equal to 1000 ounces avoirdupoife, this becomes a ftandard for finding the fpecific gravity of bodies, whether heavier or lighter than water.

It having been already proved, that every thing that fwims in a fluid juft difplaces fo much of that fluid as is equal to its weight; on this axiom is founded an inftrument called the bydrometer, for meafuring the fpecific gravity of fluids. This is generally an egglike bulb of glafs, ivory, or copper, with a thin graduated ftem, made finall a-top to receive a weight g, which will fink the hydrometer to a certain depth in proof fpirits, as fig. 7, Plate XXIV. Now a proof fpirit is generally fuppofed to be one-half of its weight a pure fpirit, or alcohol, that, if fet on fire, would all burn away; and the other half water: or, that one gallon of it thould weigh feven pounds twelve ounces, when the thermometer ftands at 55°. As bodies that would fwim in water, would fink in fpirit of wine, the weight g fhould be filed, or diminifhed, till it finks the hydrometer to the middle of the ftem; and figures above and below that middle fhould denote how much the compound is above or below proof: for if it is below proof, that is, if it has more water than fpirit, its buoyancy will be too much, and the proof-mark will be thruft above the furface; if above proof, the mark will fink below the furface : and in both cafes, to figures that fhould indicate how much water, or fpirit, there is, more than the ftandard. But though this inftrument is founded on philofophical principles, it is liable to much fallacy. For, in the firft place, fpirits and water form a very different penetration with each other, at one ftage of their mixture, to what they do at another. A pint of water, added to a pint of water, will make a quart ; and a pint of fpirit, put to a pint of fpirit, will make a quart; but a pint of fpirit, mixed with a pint of water, will not make a quart. See Hydrometrical Table, Plate XXV. 2d. Rum or brandy, when warm, will fink the hydrometer, and appear ftronger than they are: in extreme cold, or when mixed with a little fugar, they will appear weaker than they really are, \&cc. \&c.

In this table may be feen how firits and water penetrate each other in every ftage of their mixture. The upright, or perpendicular fcale, fhews the fpecific gravity of the fpirits, water being called 1000 , and alcohol 830 . The horizontal fcale a-top ferves to determinc how many gallons of water there are in 100 gallons of the mixture ; and the curvilincar line, or fcale, indicates the ffrength of the fpirits, with refpect to that fandard called proof. For example: A fpirit, whofe fpecific gravity is 900 , is compofed of about twenty-eight parts of water, and feventy-two parts alcohol ; or in 100 gallons of fuch fpirit there is twenty-eight gallons of water, and that it is twenty-two gallons in 100 above proof, as indicated on the curvilinear fcale.

This fcale being founded on experiment, an hydrometer fcale is formed from it, as feen on the right-hand of the plate, where only part of the bulb can be feen. This fcale is made from trials, in which 100 parts of pure alcohol, and 100 parts of water, were mixed in this proportion, viz. ninety-nine parts of water, and one of alcohol, funk the hydrometer to the firft divifion of the fcale; ninety parts of fpirit, and ten of water, funk it to the ninetieth divifion; ten parts of fpirit, and ninety of water, funk it to the tenth divifion, \& c. \& co.

It is curious to obferve how different the penetration of the two fluids is at different fages of this admixture; as, for example, between the fpirit-divilion of twenty and thirty, and the water divifion between twenty and thirty. It may be feen alfo, that when there are between twenty and thirty parts of fpirit, mixt between feventy and eighty parts of water, that the two fluids form a more intimate union, and occupy lefs face than in any other propor-
tion. Can the equal divifions, therefore, of the common hydrometer be true?

2d. I fill the bottle a, fig. 6 , Plate XXI. with water, and placing my finger on its mouth, invert it in a glafs of red wine. The wine (containing fpirit) is fpecifically lighter than the water; fo the heavy water defcends into the glafs, while the light wine rifes to the top of the bottle in beautifully ftriated threads.

3d. Smoke rifes in a chimney by the fame law; though, of itfelf, it is only lighter than air while it is warm, and, therefore, rifes little in the open air, and its grofs parts foon precipitate back to the earth: it is heated air that carries fmoke with fuch rapidity up a chimney. Fire heats the air on all fides, and fets its particles at an increafed diftance; hence the volume of air near a fire becomes fpecifically lighter than the colder air at a diftance, and is by it buoyed up into the atmofphere. The heated air in a chimney, therefore, makes the pillar, of which it is a part, lighter than the pillars of air at a diftance. The heavier pillars, as a, fig. 1, Plate XXI. rufh, therefore, through the fire to refore an equilibrium, and becoming rarefied themfelves, are forced up the chimney by fucceeding pillars: fo that a perpetual current continues up the chimney fo long as the fire continues, and becomes an ufeful ventilator for the room.

4th. Few land animals feem fo helplefs in the water as the human race; yet flefh and bones, and altogether, we are fpecifically lighter than water; but fo little, that, except we can lay with the face upwards, and have the mouth and nofe only out of the water, we muft make fome effort to keep ourfelves from finking.

In our ufual mode of fwimming we do not difplace fo much water as is equal to our weight, and are, therefore, under the neceffity of turning our hands and feet into fins, to keep on the furface : in the exertion of fwimming, we force too much of the body out of the water, and exhauft our ftrength in keeping it fo. A fhip waterlogged, or nearly full of water, requires little pumping to keep her from finking, the water within and without being fo near upon a level ; but when fhe fprings a leak near the bottom, the preffure there is fo great in comparifon of what it is at the furface within the fhip, that fometimes a whole crew cannot pump the water out as faft as it is preffed in. A man fwimming is much in the fame predicament; when he lies near the furface, the preffure upwards under his body is fo much greater than the weight of water over his body, that being wholly immerfed, he floats like a log, without any exertion; but if he dives a few yards beneath the furface, he will find difficulty in afcending, for in that fituation (and fo in proportion to the depth he dives) the preffure upon, and underneath, his body, will approach nearer and nearer to an equality; and as his flefh and ribs are capable of being fqueezed into lefs compafs than they naturally poffers, the exceffive preffire of water, at a certain depth, will force his body into lefs bulk than its bulk of water: being thus fpecifically heavier, and that weight increafed by the water forced into his ftomach, and the pores of his fkin, he finks to the bottom. If a perfon finks flowly into water, a little effort will bring him back to the furface; but if then he does not throw himfelf on his back, and fink his head, but with violent ftruggling lifts himfelf fo much out of the water as not to difplace fo much of it as is equal to his weight, he finks accelerated: with much effort he may bring himfelf up again; but in making this
unhappy voyage feveral times, his ftrength fails, he fwallows much water, and then becomes heavier than the fluid.

Immerfe a bladder, with a little air in it, in the pillar of water $a b$, fig. 4, Plate XX.; hang weights to it, fo that it will juft rife when thruft fo far beneath the furface as y : if it be then thruft down as low as z, it will fink; for as the preflure of water increafes in fo fivift a ratio as $1,3,5,7,8 c \mathrm{c}$. it is evident that there is a greater difference (though not numerically) in the preffure of the depth between 1 and 3, than there is between 5 and 7, or 13 and ${ }^{1} 5, \& c$. for if a man near the furface of water has a force of 3 preffing upwards under him, and but a force of 1 preffing upon him, he will certainly have lefs preflure on his body than if 19 was preffing on, and 21 under, his body. For fo great is the preffiure of water at great depths, that if a bottle be corked ever fo tight, and let down twenty or thirty fathom into the fea ; the cork will be forced into the bottle. So if water is prevented from exerting its upward preffure upoin a body, that body will be held down by the water upon it.

Hydroftatic Balance.

Every body, beavier than its bulk of water, lofes so much of its weight, by being Jiffended in water, as is equal to the weight of its bulk of rvater.

This ufeful axiom was difcovered by the celebrated Archimedes; when, by the immerfion of his body in a bath, he conceived the hint by which he detected the alloy in king Hiero's crown. He fufpended the crown at one end of a fcale-beam, and as much pure gold at the other as balanced it: now, faid he, there is an equal number of particles at one end of the fcale-beam as at the other (fuppofing the feparate particles of all matter of the fame weight); but if you, Mr. Crown-maker, have mixed the pure gold with filver, or copper, the crown will be bigger than it ought to be (fee Table of Specific Gravities), and, of courfe, more buoyed up in water. On the immerfion of the crown in one veffel of water, and the pure gold in another, it was found to be fo.

1ft. I hang the conical piece of lead a, fig. 2, Plate XXI. at one end of a fcale-beam; and a brafs conical bucket at the other, which the lead a exactly fits. I fill this bucket with water, and put weights in the fcale under it, till the lead a is balanced. If now I immerfe the lead in a jar of water, that end of the fcale-beam inftantly rifes, and fhews the lead to have lof fome of its weight: but the axiom affirms, that every heavy body, fufpended in water, lofes fo much of its weight as is equal to the weight of its bulk of water: now I have its exact bulk of water in the oppofite fcale; I
porn this out, and an equilibrium in the balance is inftantly reflored.

2d. But fuppofe I wanted to know how much the lead was heavier than its bulk of water ; or, its fpecific gravity. In this cafe I muft weigh it, both in air and water. I find the lead weighs in air fifty-five ounces; but when it is hung in water, I find it requires five ounces to bring it to an equal balance ; or, according to the laft experiment, five ounces is the weight of its bulk of water; then fo many times as five ounces are contained in fifty-five ounces, fo many times is the lead heavier than its bulk of water, viz. elcven times, which is the fpecific gravity of lead.

3d. I have a filver candleftick, which I fufpect not to be genuine filver. It weighs in air twenty-two ounces; but on being immerfed in water (hung by a fmall thread), I find it lofes 2.1 ounces; then 2.1 ounces is the weight of its bulk of water. But 2.1 ounces is contained in twenty-two ounces 10.4 times. Good filver is a little more than ten times as heavy as its bulk of water, therefore I become fatisfied with my candleftick.

4th. A new guinea fhould weigh 129 grains ; but it may weigh fo much and be made of filver, copper, tin, \&c. and have no more gold than a mere coat to cover it; but, in all thofe cafes, it will be too big, and, by that means, lofe too much weight in water; for fterling gold flould be 17.793, or feventeen times and threefourths as heavy as its bulk of water: and in order to try its purity by water, the hydroftatic balance has generally nippers and buckets to hold bodies to be weighed in water; but in this, as well as moft cafes, a horfe-hair will anfwer very well, being very ftrong, for
the fmall fpace it occupies in the water. A loop in this hair will hold the guinea; and being fufpended on a light fcale-beam, it may be weighed in air, and found, probably, to weigh 129 grains. If, then, it be fufpended in water, fig. 4, Plate XXI. its lofs of weight may be feven grains and a quarter, by which, if 129 grains be divided, the quotient will be feventeen and three quarters, the fpecific gravity of the guinea, which is thus found to be a very good one.
$5^{\text {th. A }}$ A fufpended guinea may have full weight in air ; it is immerfed in water, and lofes eight grains of its weight. This, then, is not fterling gold: for eight contained in 129 is only fixteen times; and it ought to have been feventeen and three quarters.

6th. Hence the alloy of fuch adulterated coin may be calculated pretty nearly by this method. Suppofe a mafs of metal, containing equal weights of gold and filver, was equal to the weight of two guineas, i. e. the gold was equal to 129 grains, and the filver part of the mafs equal to 129 grains; then, together, the mafs would weigh 25^{8} grains. The gold (proved as above) would lofe in water feven grains and a quarter, and the filver twelve grains and a half, together nineteen grains and three quarters; the 258 grains divided (as above) by ninetcen and a quarter, would give thirteen as the fpecific gravity of the compound mafs.

7 th. If a guinea be adulterated with copper in a proportion of one to four, the mafs may be confidered as five grains. If five grains contain one grain of copper, what will 129 grains (the weight of the guinea) contain?-It will contain 25.8 grains. The guinea muft
therefore contain 103.2 grains of gold, and 25.3 grains of copper. What then is the fpecific gravity of this guinea?
103.2 grains of gold would lofe in water 5.5 grains, 25.8 grains of copper would lofe in water 3 . grains,

129 weight of the guinea, lofing 8.5 grains

in water, would fhew that 129 divided by 8.5 , gives a quotient of about fifteen for the fpecific gravity of this guinea, inftead of feventeen and three quarters; thus fhewing its bafenefs.

Sth. This bafenefs is pretty nearly calculated at the rate of 2.1 for every deficient grain; fo that the laft guinea would be really worth no more than about thirteen fhillings, and yet the eye could not well detect the alloy. If the adulteration was with filver, each deficient grain fhould be valued at nearly four fhillings. But as copper is the moft general counterfeit, with a little filver mixed, about three allowed for every grain is near an average.

To find the fpecific gravity of bodies that are lighter than water, it muft firft be confidered, that bodies rife in air, water, or any other fluid, not by their pofitive levity, but by the greater denfity of the medium in which they are immerfed. This piece of cork rifes in water, becaufe it is bulk for bulk lighter than water: but I want to know how much. I therefore fick the cork on the hook of the fmall fcale a, fig. 4, Plate XXI. and balancing it in the oppofite fcale, I find it weigh thirty grains. Now, to force it into the water, I put weights in the fale a, till the cork is all immerfed; the weights neceeffary to do this, I find to be 150 grains. This 150 grains, and the thirty, its aërial weight, together, is the weight of
its bulk of water, viz. 180 grains. The fpecific gravity of the cork, therefore, is as the weight of its bulk of water to its weight in air ; or (as in the heavy bodies), to divide its weight in air, by the weight of its bulk of water, will give its fpecific gravity ; thirty, therefore, divided by 180 , will give 166 , fhewing the cork to be about fix times lighter than water.

2d. I have two beams of deal timber to float down the river, containing feventy-five cubical feet: will this raft fupport a man to guide it? I take eight cubical inches of this wood, and ftick it to the hook a, fig. 4, Plate XXI. and find it weighs, in air, four ounces; immerfed in water, I find it requires half an ounce in the fcale a to fink it ; therefore four, its weight in air, divided by the weight of its bulk of water, 4.5 , will give 88 for its fpecific gravity, fo that it is not one fifth lighter than its bulk of water. But a cubic foot of diftilled water, or clear rain water, weighs in air 1000 ounces; and if eight cubical inches of wood weigh four ounces in air, 1728 (the number of cubic inches in a cubic foot) will weigh 864 , ounces; which, if taken from 1000, will leave 136 ounces, that a cubic foot of this wood is lighter than a cubic foot of water. Hence, 75 times 136 would give 10,200 ounces, or 637 pounds, that the whole raft would be lighter than water, fo that it would carry the man and his wife and children. This calculation muft be admitted under certain modifications; wood foaked in water will grow heavier (therefore, experiments made on porous fubftances muft be made as quick as poffible) ; and water is lighter in hot than in cold weather, \&c. \&xc.

To find the fpecific gravity of fluids. This might be eafily done by weighing a given quantity of the fluid againft an equal quantity
of water: but the fact of a folid body lofing fo much of its weight in water, as is equal to the weight of its bulk of water, dictates a more elegant way of afcertaining what proportion any fluid bears to its weight of water. This folid is generally a conical piece of folid glafs, as fig. 3, Plate XXI. fufpended from the fcale a, fig. 4, Plate XXI, by a horfe-hair: fuppofe its weight to be 12 g 6 grains in air; and that it lofes 412 in water; then 4.12 grains mult be taken out of the weight fcale to bring the balance even, when the glafs is hanging in the water. The apparatus is now ready for bufinefs; and if the fluid to be eftimated be heavier than water, the folid glafs will rife in it; if lighter, the glafs will fink in it: fo that the difference muft be added or fubtracted, as one or other is the cafe.
ift. The glafs folid being now taken out of the water and immerfed in brandy, it will be found to fink in it, and to require forty grains to bring the balance level : therefore the forty taken from 41^{12}, leaves 372 ; indicating, that the proportional weight of this brandy to water is as 372 to 412 : or, that it is about one tenth lighter than water.

2d. The glafs folid being now immerfed in rectified fpirit of wine, it balanced feventy-four grains more than in water; which being taken from the 41^{12}, leaves 338: the weight then of this fpirit, in proportion to water, is as 338 to 4.12 ; or, if the weight in water, 412, be divided by feventy-four, the quotient will be 5.5 , fhewing the fpirit to be rather lefs than one fixth lighter than water. If water be eftimated 1, the fandard fpecific gravity of proof firit is 9.3 , to which the glafs folid is eafily adapted. But water and fpirit forming a different penetration at different fages of their mixture,
and alfo letting loofe a little of their fpecific fire at the inftant they are mixed (and growing warm), the compound fhould ftand fome time before the trial.

3d. If it be required to find how much fea-water is heavier than rain-water, immerfe the glafs folid in it, and it will be buoyed up fo that ten grains will be required to bring the balance even; ten added to 4,12 will make fea-water to rain-water as 422 to 4,12 . Or 4.12 divided by the additional weight, ten, will give forty-one; fhewing that it is rather more than the one-fortietl part heavier than rain-water, bulk for bulk.

On the Diver's-bell.-This machine is founded on the principle, that air being a body, it excludes all other bodies from the place it poffeffes. If a bell-glafs be preffed into water, with its mouth downivard, the air in the glafs will drive the water down before it, and very little will enter the bell. Availing himfelf of this principle, Dr. Halley conftructed a bell of copper, three feet diameter a-top, five at bottom, and eight feet high; loaded at bottom with fuch a quantity of lead as to make the whole fpecifically heavier than its bulk of water. The divers were enlightened by a ftrong glafs fixed in its top; and a ftop-cock there, let out the heated air. This bell was lowered from the yard-arm of a fhip, with two men in it, to the depth of ten fathoms. In their defcent, they found the water rife a little in the bell; the air about them condenfed; and thereby a difagreeable preffure formed on every part of their bodies, particularly at their ears, which feemed as if quills were thruft into them. They had light enough to fee the pebbles at botom, but it appeared red light, on every thing capable of reflecting it; the red part of light being the only part capable of forcing its way through
refifting or muddy mediums. The air preffing through the pores of their Ikin, foon became as denfe within their bodies as without, when the fenfe of preffure ceafed, and they found no difficulty in remaining at bottom feveral hours, where all was fill and tranquil, though the furface was agitated with wind. Two barrels filled with air were alternately fent down to them, and the heated contaminated air was let out, by the ftop-cock, at the top of the bell. This bell, however, proved fatal to two men in the Bay of Dublin, by that contraction which ropes fuffer in being wet: this caufed the bell to turn round in' its defcent, and entangle the ftrings by which the divers meant to ring bells, and indicate their wants to the people on board the fhip from whence they were lowered. Waiting too long for thefe fignals, the bell was raifed, and the divers were both found dead; but not drowned ; they died like the unhappy people in the hole at Calcutta, by breathing contaminated air. (See Lecture on Air.)

Being applied to, to give a defign for a bell; to go down upon the fame wreck, I recommended a conical tub of wood, three feet diameter at bottom, two and a half at top, and three feet high ; fo loaded with lead, at bottom, as juft to fink of itfelf; with a fmall feat for the diver, fig. 5 , Plate XXI.: a bent metal tube was attached to the in and out-fide of the bell, as $a b c$, with a ftop-cock at a; and a flexible leathern tube or hofe to the other end at c; this tube terminated in a forcing air-pump, faltened to the fide of the fhip : d is a folid pifton, actuated by the lever e; upoin the pifton being drawn up, the air rufhes in at the valve g, and fills the fpace n; on its defcent, the valve g fhuts, and the conical valve o opens, and lets the air be forced down the hofe into the bell: this pump kept working, while the diver, by opening and fhutting the
ftop-cock, is abundantly fupplied with frefh air, and the vitiated part is forced out at the bottom of the bell. With this bell on his head, he can walk about feveral yards in a perpendicular pofture; and having more eafy accefs to pieces of wreck than in a more cumbrous bell, can faften ropes to them, and perform any bufinefs nearly as well as on dry land. The greateft part of the wreck faved from the rich fhip Belgiofo was taken up by means of this bell.

As the diver had plenty of air to fpare, he thought a candle might be fupported in the bell, and he could defcend by night. He made the experiment, and prefently found himfelf furrounded by fifh, fome very large, and many fuch as he had never feen before; they fported about the bell, and fmelt at his legs as they hung in the water: this rather alarmed him, for he was not fure but fome of the larger might take a fancy to him; he, therefore, rang his bell to be taken up, and the fifh accompanied him, with much good-nature, to the furface.

Mr. Smeaton's diving-bell at Ramfgate was of caft-iron, 50 cwt . fo that it was heavy enough to fink of itfelf. Its fhape was a parallelopiped, $4^{\frac{1}{2}}$ feet long, 3 wide, and $4^{\frac{1}{2}}$ feet high, fo that two men could work under it, and could fee, by four ftrong glafs lights at top. It was fupplied with air in a fimilar manner to the laft.

Hydraulics.-As hydroftatics inftruct us in the action, the motion, and preffure of huids, fo hydraulics apply thefe powers to mills, engines, pumps, pipes, canals, \&c. When water is applied to mills, it is always found to act more powerfully by its weight than by its preffure; i. e. an overfhot-wheel has always more power than
when the fame quantity of water, and of the fame perpendicular height, acts againft, or under, the wheel. But where velocity is wanted more than great power, the underfhot-wheel anfwers for carrying forge hammers, rolling hot iron, or any thing where difpatch is indifpenfable. On the overfhot-wheel the water ought to fall about 5° over the perpendicular diameter to have its greateft power; and in the underfhot-wheel, fo frike the pedais at an angle of 4.5° below the horizontal diameter of the wheel, being directed to that place by a fluice inclining 45°; the water moving over a fmooth bottom and fides, to have as little friction as poffible. When water defcends on a fmall overfhot-wheel with greater rapidity than quantity, it is neceffary to have a wide wheel, and an oblong aperture in the bottom of the penftock to deliver the water. The apertures that deliver water, if round, deliver it as the fquares of their diameters; i. e. a hole twice the diameter of another will deliver four times the quantity of water in the fame time, their perpendicular heights being alfo the fame; and one, three times the diameter of another, will deliver nine times the quantity in the fame time, \&c. And as the velocity with which water fpouts from an aperture either in the fide or bottom of a refervoir, or veffel, is the fame as the fpeed with which a body let fall in air would acquire in defcending the height between the furface and the aperture ; it follows, that water flows through holes agreeably to the odd numbers $1,3,5,7,9, \& \mathrm{cc}$. i. e. if into a tall pipe filled with water I could make a puncture where I pleafed, as, for inftance, at the depth of one foot below the furface, and it difcharged 36 cubic inches in a minute; if that hole was ftopped up, and I make another of the fame diameter three feet below that, the hole would difcharge 72 cubic inches in a minute; if then I remove it five feet below that, the fame hole would difcharge 108
cubic inches in a minute, \&c.; being as the fquare root of the height from the furface to the aperture : i. e. at the depth of four feet the hole difcharged twice the quantity as at one foot; and at nine feet deep thrice the quantity, \&c.; the water being kept at the fame height in the tall pipe. A fmall allowance muft be made for the friction and eddy in the apertures: but pipes will difcharge much more water in the fame time, than a thin hole of the fame diameter, as may be feen by the following experiments, viz.

Cubic inches.

The water being kept to the fame perpendicular height; fo that we fee the longeft pipe difcharged the moft water; but where the aperture was the fame, only a thin hole, the difcharge was no more than in a proportion of 10 to 16 , or about 7,674 cubic inches in a minute. This feems a little extraordinary, and is attempted to be accounted for in this way:-The eafy mobility of water makes it prefs towards an aperture, where it is the leaft refifted, in a radiant form ; as in the refervoir $a \cdot b$, fig. 7 , Plate XXI. where the arrows point the direction of the fluid towards the aperture: now as the particles advance in oppofite directions near the bottom, they form, by their collifion, a little whirlpool at the place of their meeting, and pafs through the hole in a circular thread, confiderably fmaller than the hole itfelf, as appears at c; by this means an aperture in a thin plate will not difcharge fo much water in a given time (and of the fame heigint), by nearly one third, as a pipe of two or three inches long, bored with the fame inftrument, and exactly of the fame diameter: for the pipe prevents the eddy, and, therefore, receives the porpendicular weight lefs obftructed. The effect is much
the fame in lateral pipes as in perpendicular ones, when the head of water is the fame, as d, fig. 7, Plate XXI.

From thefe premifes we learn, that the quantities of water difcharged through different apertures, at different heights, are as the fquare of the diameter of the pipes, to the fquare roots of the perpendicular heights of the water above the pipes. This rule arifes from the known qualities of the circle, that its area is as the fquare of its diameter, viz. a circle twice the diameter of another contains four times the fpace ; and one three times the diameter of another, nine times the fpace, \&cc. So it is with the conducting pipes; one twice the diameter of another will difcharge four times the water, when the head is the fame height, \&ic. It has alfo been fhewn that a pipe of equal bore with another, but four times as low beneath the furface, will difcharge twice the quantity of water in the fame time ; if nine times lower, three times the quantity ; therefore, their difcharge is as the fquare root of their depth.

Example. If a hole of one inch diameter, 4 feet beneath the furface, will in 1 minute difcharge about 5,798 cubical inches of water ; what quantity fhould be difcharged by a pipe of 2 inches bore beneath a head of 9 feet?

As 1 , the fquare of I , multiplied by the fquare root of 4, viz. 2 , Is to 4 , the fquare of 2 (the diameter of the lower pipe), multiplied by the fquare root of 9, viz. $3,=12$,

So is 5,798 , the cubic inches of water,
To 34, 78 cubic inches, that will be difcharged by a pipe of 2 inches diameter, kept 9 feet below the furface one minute.

Or as $2: 12:: 5,798: 34,788$, \&c.

If a pipe of two inches bore fill a ciftern in an hour and an half; what bore fhould a pipe be that would fill it in half the time?

As lefs requires more in this queftion, it muft be worked in reciprocal proportion.

As 90 minutes, the time in which it is now filled,
Is to 4 (the fquare of 2 inches),
So is 45 minutes (or half the time)
To 8, the fquare of the diameter of the pipe fought, and whofe fquare root is 2.828 , the diameter of the pipe required.

On the Sypbon.-This is nothing more than a bent tube; and its ufe is that of decanting fluids out of wells, cifterns, barrels, \&c. If the tube $a b$, fig. 1 , Plate XXII. be filled with water, and then (with a finger on a and b) it be inverted, and its fhorter leg immerfed in c, full of water, the whole will rife over the vertex d, and be difcharged at b. When the fyphon is thus immerfed in water, its outer leg is confidered as from d to b; but its inner leg is only confidered as from d to the furface of the water at e; for the water below c is balanced by the water on the outfide of that leg; fo that the weight of water in the leg $d b$ is fo much heavier than that in the leg $d e$, that it will fall by its own gravity, and would leave a vacuum at d, if the prefiure of the atmof phere on the furface e did not prevent it. Hence it is to the preflure or weight of the atmofphere that we are indebted for the action and ufe of the fyphon.

This is eafily proved by a fyphon whofe legs are of an unequal length, as fuppofe the inner leg to be a d, and the outer leg only $d g$; in this cafe, the fyphon will run till the water becomes level with the end g, and there ceafe; the water hanging in the leg $d \varepsilon$
(a balance for that in $d c$), until a bubble of air gets in at g, then that leg becomes lighter, and the water returns into the veffel.

2d. The fyphon fountain, fig. 2, Plate XXII. alfo demonftrates the preffure of the air to be the caufe why water feems to rife above its level in the fyphon, but which is not fo in reality; for water cannot be raifed above its level by this inftrument. In fig. a, a is the outer leg of the fyphon, which paffes through, and is fixed in, the brafs cap of the glafs cylinder c. The inner leg b alfo paffes through the cap, and terminates above it in a capillary fpouting pipe. If the cylinder be placed upright on the ground, a few fpoonfuls of water may be poured into it at d; which will drive out an equal quantity of air through the leg b. If then the whole be inverted as in the figure, and the leg b immerfed in water, the water in the cylinder will fall through the leg a, and driving the air before it, leave the air rarefied in the cylinder. The preffure of the air on the water in the cup e will then force the water into the cylinder in a beautiful jet.

3d. Tantalus's cup, fig. 3, Plate XXII. is another device to fhew the action of the fyphon. This cup is open at the bottom c, fo that the longer leg of a fyphon may be cemented into it, and make the cup capable of holding water; if water be then poured into it nearly to the bend of the fyphon, the water will remain in it, as in a common cup; but if an apple be dropt into the water, it will begin to run out at the bottom, by the apple forcing the water over the bend of the fyphon.

4th. In limefone mountains, caverns are very common; and in their entrance large irregular rocks are generally jumbled toge-
ther, fo that it is not unnatural to fuppofe fyphons may be formed amongft them, through which the water in the caverns mult iffue ; wells formed from water, thus iffuing, will ebb and flow, fomething like the fea, but by no means with the fame regularity. As clouds are attracted by mountains, and alfo driven againft their tops and fides by wind, mountainous countries are generally wet countries. But it cannot be fuppofed that all the water, thus falling on mountains, runs down their fides; by far the greateft part finks into the chinks and pores of the ground and rocks, ruming in promifcuous channels, or percolating, through the gravel, till it finds a convenient place to break out ; there it commences a f pring , or a fountain, perhaps the head of a large river. For, dead and inanimate as our mother Earth appears, we find her thus fraught with veins and arteries like the animal body, and we muft actually prick one of thofe veins, before we can get water to fupply a common pump. It is, therefore, the rain falling on the higher grounds, by which the lower are fupplied with wells and fprings. Rain falling on the mountain, fig. 4, Plate XXII. and percolating through the fiffures $a a$, will drop into the cavern A, and in time fill it up to the level $b c$, when it will fall over the bend of the natural fyphon $d c n$, and the whole be difcharged at n : the fountain n will then remain dry till the cavern is again filled up to the level $b c_{\text {, }}$ \&c. and hence ebb and flow.
$5^{\text {th. }}$ The diftiller's cranc, or fyphon, fig. 5, Plate XXII. begins its action by the ris inertic of the fluid into which it is immerfed. Let B be a barrel, and n its bung-hole. The fyphon from n to r is about three feet long, and about one inch diameter ; it has a ftopcock near its end, which muft be fhut, before the fhort end is put through the bung-hole. If the barrel be full, one would not think
the liquor would rife of itfelf over the bend m; but the cock being fhut, the air in the crane will be condenfed by the endeavour which the liquor within it will have to rife to its level: if then the cock be fuddenly opened, the liquor will inftantly fpring over the bend m, and become decanted.

On this principle, many years ago, I invented an ufeful, cheap, and fimple machine to raife water above its level by its vis inertic, and the flexibility with which the particles of water flide over one another, for the purpofe of making a fhip pump herfelf. The firft idea was that of a fquare clofe box, to be placed in the middle of the fhip, reaching from her bottom, a little above the level of the water in the fea. In this box were triangular partitions, as fig. 6, Plate XXII. $a b$ is the infide bottom of the fhip; c is an opening into the firft partition of the box ; $d d d$ are valves in each partition, opening upward. When the fhip heels to the right, the bilge water rufhes in at c, and opens the valve d; when the fhip heels to the left, the valve d is flhut, and the water (following the motion of the fhip) rufhes through the valve e, and fo to the top through the different partitions.

The objections to this mode of raifing, water; by the motion of the thip, were, that it occupied too much room in an important part of her ; and the loweft valve would be liable to be choaked up by fand, coals, and other dirt : I alfo found, that though in a model the momentum of the water was quite fufficient to open the valves, yet that much of that momentum was loft, by the fhort range the water had from one fide of the box to the other. Why not, therefore, make that range the whole length of the fhip, and leave the water anconfined? Suppofe, in fig. 7 , Plate XXII. $a b$ the length of the
fhip's keel, and that by placing it on the fulcrum c, that keel can be made to imitate the rolling, or pitching of a fhip. This model is an open box between d and c; but fhut on the fides $e g$ and $g b$. On $g b$ is fixed a floping pipe (conforming to the fhape of the fhip), having the valve i opening into it. The other end of the model being the fame, needs no further defcription. The model being now held level on the fulcrum c, and nearly filled with water, if the end b is deprefferl, as in the figure, the water will rufh into the box $e g b$, and pufhing open the valve i, rife confiderably high in the tube i. The valve will be inftantly fhut by the water now on its top, and on the end a being deprefied, the water will rufh into the oppofite box, pufh open the valve n, and rife in the pipe n. This operation continued, the water will rife higher and higher inz the pipes, till it is thrown out of the ends o and p, every returning motion of the fhip. Why this fhould not anfiver at large, as well as in model, I know not. It has been fhewn, explained, admired, and forgot.

The model to reprefent the hold of the fhip was about three feet long, four inches wide, and four inches deep, as fhaped fig. 7 , Plate XXII.: fixteen gills of water were put into it; and then it had a motion given it on its fulcrum c, fo as to form an angle with the horizon of 20°, and each pitch took up one fecond of time. In every two pitches (after the pipes o and p were full), it difcharged one fixteenth of the bilge water at twice the height of its depth.

Another model for the fame purpofe, was two force-pumps, actuated by a globe of lead, as fig. S, Plate XXII.: this machine was to be placed on the bottom of the fhip, and worked by her motion. The pipes on communicated with the bilge water, fo that when the
ftern of the fhip funk beneath the horizontal level, as in the figure, the ball rolled down the lever L to a, and by its weight preffed down the pifton c; forcing the water under it into the clofe box d. By the fame motion the pifton s was raifed, and making a vacuum in the fpace u, the bilge water was preffed into it, through the valve v. Upon the ftern of the veffel being depreffed, the ball would roll down the channel L , and ftop at e, by which the pifton s would be forced down, and the water under it forced into the box d. When this box became full, the water would prefs open the valve q, and rife up the pipe b to the deck of the veffiel.

I alfo fpent fome time and money in contriving and conftructing a pendulum pump, to be actuated by the motion of a flip; but they all required more room than could be fpared for them. If thofe hints, however, can ftimulate to, or aflift in, the profecution of fo defirable an addition to the perfections of a fhip, I flall think thefe attempts not wholly loft to mankind.

Conducting Pipes.-Water, like all other fluids, flows the eafieft through, or over, itfelf: hence horizontal pipes of conduct flould be larger than can be filled by the water that runs through them; fo fhould ditches and drains; for the fides of pipes, and drains, that are filled with water, retard it by great friction. If horizontal pipes are filled from a refervoir, they difcharge lefs in proportion to the diftance they convey water; and that nearly in an inverfe ratio to the fquare roots of that diffance; i. e. if a pipe, 4 yards long, difcharge 20 gallons in a minute, the fame width of pipe, 9 yards long, would difcharge 13.3 gallons: for as 2 (fquare root of 4) is to 20 gallons, fo is 3 (fquare root of 9) to $13 \cdot 3$.

It is a curious fact, that if the hole c, and the pipe e, fig. 7 , Plate XXI be bored with the fame tool, the pipe will difcharge nearly one third more water than the hole in the fame time. (See Hydroftatics.)

Air will fometimes, in crooked tubes, form lodgments, that will ftop flowing water, if its fall be inconfiderable. If I pour water into the fummel a, fig. 9, Plate XXII. the water will proceed to b, and there trickle down the part $b c$, leaving that fpace nearly filled with air, which will be imprifoned by water that will fill up the bottom at c. If more water be poured in at a, the column of air $b c$ will force up the water to d, which alfo trickling down the declivity $d e$, will lodge between e and n, and prevent any water from making its way out at o. In pipes of confequence, fometimes a ftop-cock is fixed at b and d, to let out the lodgments of air.

Of Pumps.-In the common fucking-pump, as it is called, water rifes by the preffure of the atmofphere on the furface of the well. The principle may be more particularly feen by the glafs model, fig. 10, Plate XXII. where a reprefents a ring of wood, or brafs, with pliable leather faftened round it, to fit the cylinder A. Over the hole, in this ring, is a trap-door, or valve of metal, covered with leather, part of which often ferves as a hinge for the valve to open and thut by. The handle and rod r end in a fork s, which, paffing through the ring, or pifton, is fcrewed faft to it on the underfide. Below this, and generally over a tube of a finaller bore, as \approx, is another valve, v, opening upward, which will fuffer water to pals up, but not down. Now, when the pifton a is pulled up by the handle (its valve being clofe), the column of air on its top is lifted, and a vacuum underneath takes place; to fupply this, the
air, in the lower part of the pump, preffes into the vacuum, and hence the whole column of air zuithin the pump becomes lighter than a fimilar column zeithout the pump. By the fuperior preffire on the well, the water is forced into the pump, and through the valve v, which fhutting, prevents its return. The pifton being now forced down (as in the common act of pumping) through the water (which opens the pifton valve), the next ftroke lifts the water to the fpout of the pump, and making a vacuum underneath, at the fame time a frefl quantity is forced through the lower valve, which, if very tight, will keep the water there; fo that the pump, remaining always full, water is delivered at its fpout, on the firf motion of the handle. As this effect is produced by the preffure of the atmofphere, and as it is found that a column of water, of about thirty-two or thirty-three feet high, is equal in weight to a column of air of the fame bafe of forty-five miles high, therefore, the pifton a muft always work below thirty-two feet from the furface of the water; perhaps if it never works more than twenty-eight feet above the water, it may be better, as the air varies much in its weight at different times.

Many attempts have been made to reduce the friction and wearing of this pump: to reduce the friction of a pump, is all that art can do; for the column of water muft be lifted by an adequate power, let the contrivance of the pump be what it may : metallic conical valves are great improvements. They are ufefully formed as fig. 11, Plate XXII. which is a fection of the whole pifton : 0 is the conical valve, ground very even and finooth to fit its cavity in the pifton $a a$; it is kept in its cavity by the weight g, and direited into it by the wire acting through n, when lifted up by the water. The pifton is leathered as ufual, and the iron crane s goes through
it, and is faftened by the fcrew nuts r r. c is the pump rod. Both the upper and lower valves are made in this form; if well made, they are water-tight, and never wear.

The manner in which this valve is applied, may be feen in the fection of the pump, fig. 12, Plate XXII.

To leffen the friction of a pifton, and prevent the injury it often fuffers from gravel, fand, and other hard fubftances, a fquare trunk is ufed for the body of the pump, as fig. 13, Plate XXII. and a pyramidal pifton, as fig. 15 . This pump, for temporary drainage, and to be worked by one man, is about four inches fquare within, and ten or twelve feet long, having a valve d opening into the trunk. The pifton is generally made of ftrong horfe-leather, firft cut out into goars, as fig. 14, Plate XXII. and when fcrewed together, appears as c, fig. ${ }^{15}$, Plate XXII. The vertex of the pyramid is nailed to the end of the handle c; and the fides of the pyramid are fuftained by fmall chains, or cords, faftened to the faid handle: this precaution prevents the fides from rolling down, or giving way, when long foaked in water. This pump lies floping on the bank of the pond, or pit, it is intended to drain ; requires no faftening ; and is eafily removed: its pifton, when thruft into water, gives way at its fides, and anfwers the purpofe of a valve, letting water pafs through it with the utmoft eafe ; but on its being pulled up, the fides fpread clofe to the fides of the trunk, driving up all the water before it, without more friction than is neceffary to prevent the return of the water. This cheap and fimple machine is peculiarly adapted for draining caiffons, ponds, marle pits. quarries, \&c.

To irrigate land in dry weatrer, Avithout fatigung the labourer, is of great importance in agricuiture. A portable máchine, of the fhape of fig. 1, Plate XXIII. will, I believe, anfwer this purpofe very well. In moft fields there are ditches or ponds, on the banks of which (as on a fulcrum): this bucket-lever will turn. $a b$ are two inch boards, ten or twelve fect long; ten or twelve inches wide, and kept afunder by fides, water-tight, of two inches. On the upper board is fixed a flaircafe of battens, fixed acrofs, as o o. Down this faircafe a man walks to b, when his weight will fink the bucket c into the water, which will rife through the valve d. If he then walks up towards a, the bucket e will rife, by which its water will run under his feet and between the boards a and b, and be difcharged at the hole g into a trough or chaninel, which will convey it away into the field.

Another method by which I have watered land was by means of a portable boat or punt ; in the bottoin of which was fixed an upright pump, communicating with the water in the pond, but preventing its entrance into the boat. This pump had a difhed top, as $c c$, fig. 2, Plate XXIII. ftuck full of nails without heads; on this a wooden fruftum, or a portion of a globe, was placed, having the maft d fixed in it; and under it (by a chain) the pifton of the pump, made weighty enough to keep the maft upright when there was little wind. The fail on this maft kept always on the lee fide of the maft, from what quarter foever the wind blew, which, nodding to the fucceffive impulfes of the wind, worked the pump, and forced the water over the bank of the ditch in the fpout g. This little boat being moored by the fones b and i by way of anchors, kept the pump going whenever there was a wind, and watered its. neighbourhood without trouble or attention.

Archimedes's fcrew-pump, fig. 6, Plate XXIII. though one of the oldeft methods of raifing water, is not one of the wort, particularly for temporary drainage. Water rifes in this hollow fcrew by endeavouring to fall. Its lower end being in the water, its upper may be raifed fo high, that the parts of the thread $c d$ may lie nearly horizontally ; yet not fo much fo, but that the declivity between d and c fhall fuffer the water to fall, and form lodgments in the lower parts of the thread, as $c c c$. This engine generally confifts of three or four threads enclofed within a cylinder.

The Rope-pump. Fig. 1, Plate XXIV.-This fingular pump confifts of two or three hair ropes paffing over a three-groved pulley in the box \approx, projecting over the well : they alfo pafs under a pulley in the water, and are kept tight by a weight e. The upper pulley is put into fwift motion by the wheel A. To the afcending parts of the ropes a quantity of water adheres, and is difcharged with great violence in the box z. This adhefion is occafioned by the preflure of the atmofphere towards the ropes; as a confiderable rarefaction of the air is made near the ropes by the fwiftnefs of their motion. A man will raife about eight or nine gallons per minute out of a well near 100 feet deep with this pump.

The Forcing-pump.-The principle of this pump may be feen in the model, fig. 2, Plate XXIV. where a reprefents a folid pifon, which, when drawn up, rarefies the air below it, and, of courfe, preffing lighter on the water within the pump than the preffure is on the well, that greater preffure forces up the water through the valve c, which (being made a little fpecifically heavier than the water) fluts, and prevents the return of the water. The piffon a being now prefled down, the water above c is forced through the
valve d into the air-veffel g. This veffel has a pipe e fcrewed tight into its top, that reaches nearly to the bottom of the air-veffel g, and is open at both ends: when the water, therefore, covers the lower end of this pipe, the air above it becomes a prifoner, and condenfed, as the water is forcing in, which, by its reaction on the furface of the water, forces that water through the pipe e with great velocity, and in a continued jet. It is on this principle that the extinguifhing engine is formed, however different its conftruction may be; which is fometimes with two forcing-pumps and an air-veffel between them: for the air-veffel is not only ufeful in preventing the burfting of the pipes, but in adding fo confiderably to the velocity of the water, that a raging fire is rather dafhed out than extinguifhed by it ; for fo great is the repulfive force of fire, that water barely poured on dry combuftibles would make them burn with greater fury, the water being carried off by the fire in the character of fteam as faft as it is poured upon it. See No. 1, in the Table of Specific Gravities, fig. 3, Plate XXIV.

To make the pifton of a fucking and forcing pump to act both upwards and downwards, and thereby produce a continued ftream of water without the pulfations common to pumps, fee fig. 6 , Plate XXIV. This pifton is folid, and, when drawn up, rarefies the air within the pipe c, up which the water will flow, and through the valve d : on the defcent of the pifton, that water will be forced into the air-veffel e; and a vacuum will be made above the pifton, which, communicating with the pipe g, will rarefy the air fo much within that pipe, that the water will flow up it into c, and cover the pifton. This water alio will be forced up into the air-veffel by the afcent, or next froke, of the pifton; fo that water is raifed both by the afcent and defcent of the pifton.

For the moft approved engine for extinguilhing fire, fee fig. 1, Plate XXVI. as a fection of it. a is a femicylinder of caft-iron, having a pifton c, moved by the arms $b b$. This pifton, or flider, is water-tight on all fides, as well as in the focket g. When the handle b is raifed, the pifton will be raifed into the pofition c, and leave a vacuum in a : the water out of the trunk A will then rife up the pipe n, through the valve o, and flowing through the hole z, will fill the fpace a. On the next return of the handles $b b$, that water will be forced through the valve s into the conducting-pipe, of which u is a fection, and alfo into the air-veffel B , while a vacuum is made on the fide of the pifton c, and the fame effect will take place on that fide as on that of a; viz. the valve r will open, and the fpaces $c r$ will become filled with water, which, at the next ftroke, will be forced through v into the conducting-pipe u, and the air-veffel B; a vacuum being thus formed both before and behind the pifton c, the water of courfe follows on both fides, and hence the femicylinder full of water is forced into the conducting-pipe on every return of the handles $b b$. Twenty men may be employed to give this alternate motion to the machine, as may be feen in the elevation of it, fig. 2, Plate XXVI. where two pipes may be employed, as C and D , and ten men to each of the handles $w x$. Dirt and gravel very frequently render other engines ufelefs at the moment when they are moft wanted: this is never fo obftructed; for if any gets into the fpace $a c$, the firft return of the pifton c will throw them out through the openings $z y$; and fhould any dirt form a lodgment about the valves o or r, the ferews $q q$ can inftantly give accefs to the infide.

Fig. 9, Plate XXIII. is a boat that can move againf the ftream or tide of a river; a a a are two fets of paddles, or oars, on one
axle, c. There project before the ftem of the boat, as in the plan, fig. 4, Plate XXIII. On the axis there is a conical part x, on which a cord or rope is coiled three times round: the end of this cord is faftened to a fake by a projecting fide of the river, and, as it uncoils, hangs over the ftern of the boat, as $m m \mathrm{~m}$. The conical part of the axle x obliges the cord to flide down it, fo that the cord never coils round any other part of the axle. Three or four boats may move or follow one another on the cord m. There fhould be two cords of about 100 yards each, capable of being eafily attached to, and detached from, each other ; fo that one might be carried forward up the river, and its end faftened, while the other was in ufe. This experiment was tried, and fucceeded, on the Thames.

Another method, as fig. 5, Plate XXIII. is to make a boat walk againft the fiream. The axle c, fig. 4 , is a crank, as \approx, fig. 5 ; on this crank are looped the poles $q q$, with iron terminations to make them fink, and prevent their wearing. Thefe poles walk under the boat, on the bottom of the river ; and muft be rather longer than the boat, to be applicable to the various depths of the river. This boat being long in proportion to its width, becomes a rudder, and always turns its head againft the ftrongeft and moft rapid part of the ftream ; and, therefore, guides itfelf.

Fig. 7, Plate XXIII. is a boat machine for clearing the bottoms of rivers of gravel, mud, \&c. It is moored over the bottom to be cleared, and is worked by the current of the river, by paddles on both fides of the boat, fixed at the ends of an aیle, as in fig. 4, Plate XXIII. On this axle is the pinion a, working into the teeth of the wheel b : this wheel is fupported on the fixed frame g, which is the fide of a fquare hole that goos through the bottom of the
boat, made tight to prevent water from getting into the habitable part of the boat. cg x is a frame of boards made to flide up and down through the hole in the bottom of the boat: in the bottom of this frame runs the roller m; over which, and the toothed roller b, goes the leathern band $s s s$, having buckets $e e e$ fixt in it at proper diftances. This band is made to lengthen or fhorten, as the river deepens, or grows fhallow; and the weight of the frame ${ }^{c} g x$ preffes the buckets againft the gravel, fo that they may fcrape it up, and rife full. When a bucket rifes over the roller b, its mouth becomes inverted, and the gravel is thrown down into. the body of the boat.

Boulton and Watts's Steam-engine, Plate XXVII.

A. The boiler, about half filled with water.
B. The fteam-pipe, that conveys the fteam into the cylinder.
C. The door, where a perfon may enter to clean out the boiler.
D. The loaded, or fafety valve; forced open by the feam when too ftrong; or to be opened by the handle c.
E. Feeding-pipe, from the warm-water ciftern S.
F. Fire-door, opening to the fire under the boiler.
G. The afh-hole.
H. The cylinder, having a pifton in it, on the end of the rod d, which works through the air-tight ffuffing-box o.
I. Nozzles, where the fteam is let out.
K. Plug-frame, to open and fhut the valves in its rifing and falling; thereby fuffering the fteam to pafs to the condenfing pump Q.
L. Beams that fupport the cylinder.
M. The exhauftion-pipe, that conveys the fteam through the cold-water well O to the pump Q .

N . Injeftion-pipe, in the cold well, to throw in a little cold water into the exhauftion-pipe M .
O. The blowing-pipe, to let out air that might accumulate in the air-pump Q.

P . The barometer, to compare the ftrength of the feam with the preffure of the atmofphere.
O. The air-pump, immerfed in a well of cold water. When its pifton afcends, by the chain Q, it draws the fteam out of the cylinder, and condenfes it by the coldnefs and the vacuum in the pump. The feam becoming water by this means, the pifton defcends into it, the pifton-valve is opened by the water (as in a common pump), and the next afcent of the pifton forces that warm water through the box R up the pipe r into the ciftern S (which pipe is cut fhort in the drawing, but it begins at the box R). This water fupplies the boiler.
R . The box of the pipe r.
S. The ciftern of ditto.
T. A forcing-pump, whofe folid pifton is forced down by the weights s, and the pifton of the cylinder H drawn up. When the neam from the boiler forces down the pifton of H , the pifton in T rifes, and rarefying the air in the infide or barrel of the pump, the preffure of the atmofphere on the furface of the well forces up the water as in a common pump: but by the defcent of the piffon in T , the water is forced through the pipe x to the place where it is wanted.
W. Is an air-veffel to prevent the burfting of the pipes
Z. The pipe to feed the condenfer-ciftern O N O .
Y. The great lever-beam..

This excellent machine is fometimes made to work by the pref-
fure of fteam both upward and downward; i. e. the fteam can be made to prefs the pifton up, as well as down. This adds confiderably to the firft expence, and the contimued expence of fire.

Steam-Engine, with the Cylinder in the Boiler.-It is fo important an object to keep the cylinder hot, that in the laft engine the condenfation of the fteam is performed in a feparate veffel, at a diftance from the cylinder. To do this more effectually, I have had feveral engines made with the cylinder within the boiler, as Plate XXVIII.
A. The boiler, with the bottom part of the chimney paffing through it.
B. The cylinder within the boiler, and fixed to its top; having holes all round that top to let in the fteam.
C. Pifton, the rod of which works through a collar of leathers (or ftuffing-box) and is fufpended from the great lever T. A joint in this rod, fliding in a groove, makes the ftroke perpendicular.
D. A pipe from the cylinder B, communicating with the injec-tion-valve, and the cold water injection-pipe I I, leading from the cold water ciftern O .
E. Steam-valve.
F. Injection-ditto.
G. G. Eduction, or exhaufting-pipe, from the cylinder to the hot-well S.
H. Snifting-clack, to let out air from the cylinder.
J. Pump for feeding the boiler.
K. Hot-ciftern.
L. Feed-pipe, to fupply the boiler with warm water from the hot-well K.
M. Wafte-pipe, to convey away the water when the hot-ciftern is too full.

N . The fucking and forcing pump, to raife water from a well, or river, to the ciftern O .
O. Large ciftern, refervoir, or penftock, from whence water can be turned on wheels, or made to fupply towns, houfes, \&cc.
P. Connecting rod from the beam T to the crank, which gives motion to the great fly.
Q. Q. Q. Plug-tree, for working the geer, i. e. to open and fhut the valves, and work the hot-pump.
R. Safety-valve, to prevent the burfting of the boiler; if the fteam be too ftrong, the valve opens and lets it out.
S. Hot-water well.
T. The great beam, or lever, connected with the pifton C, the plug-tree, and the pumps.

Thefe kind of machines approach nearer to the animation and powers of animal mechanifm, than any yet invented by man.

```
NNDOF THE EIRST VOLUME.
```


8

1
1
x
$O \mathbb{N} \mathbb{L} \mathbb{G} \mathbb{H} T$ 。

MAGNETISM.

WHEEI C.ARRIAGES.

$$
-\quad-\cdots \cdot
$$

$\mathbb{P} \mathbb{N} \mathbb{E} U \mathbb{M} \mathbb{I}^{\prime} \mathbb{C} \mathbb{S}$ 。

HXDROS'ATICS.

HYDRATLIGS。

1

A SYSTEM

OF

FAMILIAR PHILOSOPHY：

IN
 TWELVE LECTURES；

ZEING TEE COURSE USUALLY READBY

MR．A．WALKER．

 CONTAININGTHE ELEMENTS AND THE PRACTICAL USES TO BE DRAWN FROM THIE CHEMICAL PROPERTIES OF MATTER：THE PRINCIPLES AND
application of mechanics；of hydrostatics；
of hYdraulics；of pneumatics；of
MAGNETISM ；OF ELECTRICITY；
OF OPTICS；AND OF ASTRONOMY．
including every material modern discovery and IMPROVEMENT TO THE PRESENT TIME．

[^11]
A NEW EDITION；IN TWO VOLUMES．

VOI」, II.
I. ON゙DON:
\＆RINTEDFOR THE AUTHOR，ATHS HOUSE，NO．42，CONDUIT－STREET，HANOVER－SQUAREG （3．KEARSLEY，FLEET－STREET；BELL AN゙D BRADFUTE，EDINBURGH；BRASH AND REID，GLASGOW：AND COI－BERT，CAPEJ，－STREET，DURIIN

CONTENTS

OF THE SECOND VOLUME.

LECTURE VII.

Electricity -

PAGE I
Introductory Remarks.-On Electrical Machines.-On Points.-On the Attraction and Repellency of Electricity.-On the Leyden Vial.

LECTURE VIII.

Electricity continued
Of Spontaneous Electricity. -Of Lightning.-Of Animal Electricity. -Electrophorus.-Medical Electricity,-Experiments, mifcellaneous and entertaining.

LECTURE IX.

Optics
P. 75

Catoptrics.-On Vifion.—Optical Inftruments.-Tbe Night Glafs.-The Refracting Telefcope.-The Reflecting Telefcope.-Of Microfrops. The Single Microfcope.-The Duble, or Compound, Microfcope.Solar Microfcope.-Opaque Microfiope.-The Magic I antern.-Tbe Camera Objcura.-Mijcellancous Experiments, Deceptions, \&f.

LECTURE X.

Aftronomy
General Viezu of Creation.-Ancient Opinions concerning it.-Reafons roby the Earth muft be a Globe. -Why rather an oblate Sploeroid.How proved. - How its zobole Surface becomes its general Top.-Day, Night, red the Seafons, bow produced. - How proved.-On the Celeftial Globe. -Origin and Uje of the Conftellations.-Tbeir Names.-Tloofe ufeful in Navigation.-Precelfion of the Equinoxes.-Signs of the Zodiac.-Tecbnical Aftronomy.-Equation of Time.-UJe of Time-keepers.-Reafon of the Biffextile or Leap-year.

LECTURE XI.

On the Moon - - p. 175
Nature of ber Plafes, Motion, and Eclipfes.-Of ber Nodes, and their periodical Revolution.-Her Librations, what.-Horizontal and Harveft Moon.-On the Caufe of Tides, in the Air and Sea.-On Currents.

LECTURE XII.

Aftronomy continued - - P. 205
Newtonian Doctrine refpecting the Laws of Planetary Motion.-Cluaracter and Properties of the Planets, and their Moons.-Ufe of the Nautical Epbemeris.-On Altitude and Refraction.-On Comets, Eoc.

LECTURE VII.

ELECTRICITY.

THE hiftory of philofophy affords us nothing more early known than electricity, though it is generally conceived to be the lateft difcovery that has been made in the world of enquiry; for Theophraftus exprefsly mentions it 300 years before the Chriftian era; but all that was known of it, in that, and many fucceeding ages, was little more than that amber, wax, glafs, and fuch fubftances, being rubbed, had the property of attracting feathers, ftraws, and fuch light bodies. It is not till within this laft century, that we have been enabled to know that it is diffufed, more or lefs, through every kind of matter on which we can make any experiments ; and, that it is, perhaps, one of the moft powerful and important agents in nature! What this wonderful matter is, has engaged the thoughts, and pens, of the firft philofophers of our times. It was called Electricity, becaufe it was firft detected in amber, whofe Greek name is $\eta \lambda \varepsilon x \tau \rho \rho \nu$, from $n \lambda \varepsilon x] \omega \rho$, Sol; a derivation that happily mects my ideas refpecting the origin of this fluid; for I conceive it to be a child of the fun; an equatorial emanation from that luminary; and the firft fource of light and fire. Not to multiply caufes, but to make one caufe account for as many effects as poffible, I humbly conceive this fubtil matter to be the genuine prin-
ciple of light and fire: which, uniting with the fineft particles of terreftrial matter in the atmofphere, becomes light; and chemically combining with the grofice parts, fire. My reafons for this hypothefis are, their fimilarity, in numberlefs inftances, refpecting appearances, motion, power, and other effects. As to appearances, inpreffions made on the optic nerve, by folar light, and electricity, are precifely the fame. The electric fpark is commonly white like folar light; and when looked at, through a prifm, will be found to exhibit the feven primitive colours of red, orange, yellow, green, blue, indigo, and violet, like a ray of the fun's light decompofed in a dark room by a prifm. When difficulties arife in the tranfmiffion of electricity, through dubious, or imperfect conductors, then none but red rays can ftruggle through ; and the fpark is red: the fun looks thus, when his rays are ftopt by a fog, and none but the powerful red can force its way through it ; fo do diftant lamps feen through a finoky atmofphere in large cities. For if a round piece of finooth deal be covered, as $a b$, fig. 1 , Plate XXIX. with tin foil, and three or four inches left bare, from b to c; and the part from c to d be covered; if the end a be held to an electrified conductor, a red fpark will dart from b to c, over the uncovered ill-conducting wood. 2d. If a glafs tube, of two inches diameter, and three feet long, have brafs caps at a and b, fig. 2 , Plate XXIX. to make it air-tight; and by means of a fcrew and a vavle, it can be fixed to an air-pump and be exhaufted of its air. If, when it is about half extinguifhed, the end b be addreffed to an electrified conductor, red flames will pafs through the tube: exhaufted a little more, and all the colours will pafs feparately and promifcuoufly through the tube. But when nearly exhaufted to a vacuum, they will then go through altogether fo mixed, as to appear white. Is not this fimilar to the difficulties that folar light manifefts in making its way through mediums of different refifting powers?

3d. Bodies much involved in light become, in general, coloured, volatile, and inflammable; and bodies the moft coloured are the beft conductors of fire: electricity impreffes the colours of the rainbow on polifhed metals, and makes even gold volatile. Are not thefe conformities favourable to the doctrine, that fire, light, and electricity, are but modifications of one and the fame principle? $4^{\text {th }}$. When the eye has been fome time fhut up in the dark, and comes fuddenly in the face of a clear fun, if the eye be then clofed, and kept fo for fome time, a ftrong white impreffion will continue on the optic nerve for feveral feconds; the fpectrum will then turn violet; after fome time blue, then green, and fo on regularly in the order of the prifmatic colours. The firft impreffion is white, becaufe that is the natural colour of the fun's light; or it may be called the refult of a mixture of the feven primitive colours: the violet being the weakeft, it becomes repelled from the optic nerve firft, and producing an irritablity in its exit, induces a temporary fenfation of that colour. The blue fucceeds, \&c. If the electrical battery, fig. 3, Plate XXIX. be charged, and the knob a, of the difcharging rod, be firft put to the knob c (which communicates with the infide coating of all the jars), and the wire d (which communicates with their outfide coating) have one end in the water m; if then the knob z touch the water, a vivid ftream of electrical light will pafs over the furface of the water from z to d, making (in the dark) the fame impreffion on the optic nerve as the fun, which at firt will be white, then violet, then blue, \&rc. Many other fimilarities, in refpect to appearance, enight be brought forward; but we now proceed to compare the

Motion of light and electricity ; both of which appear fo inconccivably fwift, as to feem incalculable! By the eclipfes of Jupiter's
fatellites, and the aberration of light from the fixed ftars (fee Optics), we can eftimate the time in which light travels from the fun to the earth. Not that I conceive the individual particles projected from the fun reach the eye in eight minutes; I conceive all fpace to be always filled with either active or latent electricity or light; which, in the latter cafe, is put into motion by that immediately projected from the fun. For light and electricity being repulfive of themfelves, if the particle a, fig. 4, Plate XXIX. be juft projected from the fun s, it will repulfe the particle b; the particle b will repulfe $c, \& c$. \&c. and in eight minutes and twelve feconds the particle i, will frike an eye on the earth. Electricity is likewife progreffive in common experiments. Beccaria electrified one end of a wire of fome hundred yards in length; he had fmall pieces of leaf-gold placed near both its ends; when the excitation began, he faw the pieces of leaf-gold attracied at the elecirified end, fome inftants fooner than thofe at the other end. Are not electrical effects, therefore, propagated through conducting fubftances, by putting their inherent and latent elcectricity into motion like the progreffion of light? 2d. When a wire is heated red-hot by an electric battery, the red begins at the end next the pofitive conductor; proving that its motion is progreffive. It is true, that electrical circuits have been made from the in to the out-fide of the Leyden jars of feven, eight, and nine miles in length, through the crooked parts of the New River, the Thames, and alfo by a wire fufperided on a park wall of nine miles in circuit, which feemed to be fo infiantancous, that no effimate could be made of the time it took up. I have electrified two regiments of foldiers, confifiing of eighteen hundred men, who apparently all received the fhock in the fame infiant. But a fhock is like the difcharge of a bullet through the air, which drives its particles into a mafs, and, there-
fore, we cannot judge of electric motion by its fhocks, but by its progrefs through very long conducting fubftances. 3 d. If feathers be fluck in each end of a long conductor, thofe next the exciting cylinder will betray figns of electricity firft; fhewing that its motion through the conductor is progreffive.

The fimilitude of light and electricity, in refpect to power or force, is particularly ftriking. Light brought to a focus on opaque bodies by large lenfes or mirrors, produces the moft intenfe heat (for what is light at the furface of a burning glafs, is fire at its focus, if any fubftance containing latent fire be held in that focus). It will melt metals; vitrify ftones; reduce ores and oxyds to metals; boil gold ; fire fhips, \&cc. Fire does the fame ; and fo will electricity. If the battery, fig. 3, be charged, and a fmall iron. wire be tied to the hook e, and the other end to the knob \approx, of the difcharging rod, and then, by the glafs handle f, the knob a be brought to touch c, the difcharge will pafs through the wire, and melt it. If the experiment be performed in the dark, the molten iron will fly about the room like red-hot bullets. If the battery be very large (fuppofe fixty-four jars of about a gallon each, properly coated), the wire will lofe all metallic appearance, and be reduced to a calx, or oxyd, and fly about like little flakes of afhcoloured cotton.

2d. Let pieces of leaf-gold be put at the tenth of an inch from one another, between two thin flips of window-glafs, on the ivory table a, fig 5, Plate XXIX. and be held faft to the table by the rods c and b, turning on the ftiff joints c and d, and infulated by the glafs legs $g g$. If the battery, fig. 3 , Plate XXIX. be charged and a wire or chain from the hook e join the rod c, fig. 5 , Plate
XXIX. and the knob \approx of the difcharging rod touch the rod b, at the fame time that its other knob a touches knob c of the battery, the difcharge will pafs between the glafs flips, break them in its paffage, melt or rather oxydate the gold-leaf, and enamel or incorporate it in the pieces of broken glafs! If a fmall weight be placed on the glafs flips, the experimênt will fucceed better.

3d. By the electric fhock, borax and glafs have been melted, and metals revived from their calces or oxyds, as zinc and quickfilver; and it is fhewn that the fame things can be done by fire and by light. Are not thefe further proofs of their identity?

Of the other fimilar effects of light and electricity numberlefs inftances may be produced. Metals are calcined by light in the focus of a large burning lens, as fig. 6, Plate XXIX.: fo are metals by large fhocks of electricity ; particularly quickfilver. If a crooked tube be half filled with quickfilver, and inverted in two glafs veffels filled with that metal, as a and \approx, fig. 6, Plate XXIX. and a wire communicating with the outfide coating of a large electric jar be hooked to the wire c; if then a communication be made (with the difcharging rod) between the wire d and the infide coating of the jar, a fhock will pafs through the quickfilver and the fpace e. When the fhock has been feveral times repeated, the air in the fpace beg will be found confiderably diminifhed, and little red globules will appear on the furface of the quickfilver. If the fhocks are continued, the pure part of the air will all difappear, and become a part of the red calx or oxyd, agreeably to the manner of all calcinations.

2d. Yegetables thrive in light, and die in darknefs: fo infulated
beds of flowers, and all germination, frequently electrified, have had their growth accelerated; as well as the hatching of eggs. Both light and electricity change vegetable blue juices red; both produce flame; expand fluids; precipitate lime from lime water; and promote the growth of vegetables.

3d. Electric fhocks, fent through a fword blade, excite the fame order of prifmatic colours on the fteel as is made on it by different degrees of heat; whether that heat is produced by culinary fire or light.
4.th. Spirit of wine, fmoke of a candle juft put out, gunpowder, powder of colophony, refin, \&cc. ignite with the fmalleft fpark of electricity, even when conducted by a piece of ice ; becaufe their latent fire is copious, and not fettered as culinary fire in general is by aqueous, faline, or terreftrial particles, which make its difengagement flow and inactive. Whereas electric fire drives into and excites the natural fire inherent in bodies.
$5^{\text {th. Canton's phofphorus (made of calcined oyfter-fhells), if her- }}$ metically fealed in a glafs, and expofed to any coloured light, fuch as may pafs through a ruby, a fapphire, \&c. may be feen to return or reflect the fame light when inftantly expofed in the dark. So, when the fame profphorus is held near an electric explofion, whatever is the colour of the explofion, that colour will be feen emitting for feveral minutes in the dark from the phofphorus. Hence letters, the planets, and many other devices painted with the white of an egg, and the pounded phofphorus frewed upon it, will continue luminous in the dark (after being held near an electric ex-
plofion) for feveral minutes; and continue to have that effect for years, if kept very dry.

6th. Afhes, coals, and other burnt bodies, revive to combuftibility when expofed to light, for uniting in the compofition of vegetables they become again fapid and inflammable. So if alkaline air (which is totally uninflammable) be inclofed in the tube $g e b$, fig. 6, Plate XXIX. over quickfilver, and electrical fhocks be fent through it for fome time, the air will increafe in bulk and become completely inflammable. Does not an infulated combuftible burn with greater vigor and brilliancy when electrified during the time of its combuftion?

7th. Fire and light expand all bodies with which they unite, or come in contact with. So, if a tall glafs jar be half filled with water, as fig. 8, Plate XXIX. and inverted in a veffel, having the wire and knob c ftanding in it ; and then another knob and wire acting through the collar of leathers d be placed about an inch from the other knob, an explofion from a large jar, and darting from \approx to c, will fo fivell the air as to deprefs the water in the jar.

It has been faid that electricity cannot be excited by the rubbing of two conducting fubftances together, nor by the friction of two non-conduaing fubftances; this is not true; for, if two pieces of broken china be rubbed gently together, one piece will be in a pofitive, and the other in a negative ftate; as may be proved by holding infulated fmall flaxen threads near them, as fig 7, Plate XXIX. $a b$ being glafs. But if the edges of the pieces of china be ftruck brikly together, they will produce fparks of fire, but no
electricity : for if the threads are held near them, no figns of electricity will appear. 2d. Two glafs tubes rubbed brifkly together produce a vivid purple light in the dark, and a ftrong phofphoric fmell; but no attraction or repulfion, as may be proved by the above threads *: but if two pieces of plate-glafs be warmed and gently rubbed together, the one will be found in a condenfed ftate, the other in a rarefied ftate, by the above teft. 3d. Air and glafs are both non-conductors ; yet if warmed glafs be blown on by a pair of bellows it will betray figns of electricity, fo will amber. May not gentle friction, therefore, exhibit fire in the pure character of electricity? and when more violence is ufed, call it forth (mixt with terreftrial matter) as common fire?

Thefe analogies, I hope, prove the identity of light, fire, and electricity ; and if light and fire have been proved in another lecture to be derived from the Sun, I truft we may alfo confider him as the parent of electricity. : Yet fill there are great differences between the action of fire and electricity. Ordinary fire or light will not give the electric fhock, nor produce lightning; neither will ordinary air difcharge a bullet till it is condenfed; yet fill it is air.

Why is there more thunder and lightning in fummer than in winter? in hot than in cold climates? Is it not becaufe the fun's

[^12]rays are more direct upon us at that feafon, and that a greater quantity of electricity falls on that part of the earth and its atmofphere? May not that abundance fometimes fo fuperfaturate the upper regions of the air (which from its rarity is a conductor, and of courfe a receiver of electricity), that it fhall make violent efforts to get through the non-conducting lower regions of the atmofphere, and produce thunder and lightning? Are not thofe concentrations of electricity called thunder-bolts favourable to this opinion? For, that accumulated lightning does often affume the appearance of a ball of fire is beyond all doubt; and fuch have even been produced by artificial electricity. I conceive folar light to be in a more elementary ftate in the character of the electric fluid, than it is in either ordinary fire or light; for in our experiments upon both we always find them entangled with terreftrial matter : could we refine them from that matter, I prefume to think the refult would be electricity: May not this etherial matter be pure electricity coming from the fun, but mixt and fo far contaminated in travelling through our atmofphere, that in the air it Jball only be light, and in the earth fire? That this fire thall be culinary when called forth from the earth, by ordinary combufion, and elcetric when called forth by friction? The atmofphere is generally in a condenfed ftate, except when it is in a fate of difeafe by thunder and lightning; it is then pofitive and negative, or in a ftate of alternate condenfation and rarefication, by fwift gradation, indicative of the perturbed flate of the air, which cannot conduct the lightning fwift enough into the earth; or, the earth's attraction, for it cannot be fatisfied without a negative exertion in its favour, to help it through the air. Do we not often fee condenfed lightning fall from the atmof phere like a ball, and roll along the dry earth before it can make its way into it? and do we not often fee it, in the character of a meteor, fly obliquely
the length of a nation before it finds the fea, or ground fufficiently moift for its admittance? and may not comets themfelves be a condenfation of oppofing light, from different funs, concentrated by oppofition, and impelled into the ftream of the moft powerful light? As calculation has failed in regard to thofe wonderful bodies, a conjecture I hope may be pardoned.

SECTION II.

On Electrical Machines.

HAVING thus endeavoured to eftablifl what I conceive Electricity to be, I muft now try to explain the beft modes of its excitation, and making thofe experiments already mentioned. An electrical machine is now fo common, that I fhall only mention the two forms I think the beft. A cylinder of well annealed glafs, about eighteen inches long in the belly, and fourteen diameter, is a good fize. The caps fhould be of hard wood, as round and finooth as poffible, and of a piece with centres on which the cylinder turns: to one of thefe centres the handle a fhould be fixed, fig 9 , Plate XXIX. The two conductors, b and c, are of copper or tin, very fmooth, round, and without points or edges, of about eighteen inches long, and eight inches diameter. To the negative conductor b, muft be fixed an elaftic cufhion of red leather, ftuffed evenly with curled hair, of about ten inches long, and fixed fo as to lie flat to and fit the cylinder: on its under fide muft be fewed a piece of the above leather ten inches wide, and five inches long; and at the fame place a piece of black Perfian filk ten inches wide, and fixteen inches long, that will reach over the cylinder, as d :
to the prime conductor, c, muft be attached a row of eight points, each about the length of commoin pins, whofe points muft be as near the glafs cylinder as poffible, without touching: both ends of the cylinder, as well as the two conductors, muft be fupported on folid glafs pillars. The pillar g fhould be faftened on a piece of board that could flide in a groove; and be fixed by a wooden fcrew to the board that fupports the whole machine: this is to prefs the cufhion more or lefs to the cylinder. On the part of the filk that touches the cylinder, under the cufhion, fhould be fpread a little amalgam*, and the machine is then ready for experiments.

Another machine, of greater power, is made of a round plate of thick looking-glafs, fig. 9, No. 2, Plate: XXIX. This plate turns on an axis a, fupported by the mahogany frame $c c c$, by the handle g. The rubbers are of red leather fuffed with curled hair, and nailed to thin flips of wood, $d \cdot d$, one on each fide of the glafs, and made to prefs the glafs very clofe by the fcrews $x x$. To thefe rubbers are attached oil'd filk curtains, $z z$, on both fides of the glafs. The conductor, www, is of brafs, and fixed to the frame $c c c$, by the glafs fupporter q, which infulates the conductor w, and terminates in the two knobs $s s ;$ into thefe knobs are fcrewed fmall cylinders of brafs, with a number of points that nearly touch the glafs, and receive the electric matter from it : they cannot be feen in the drawing, being behind the curtains. For exciting pofitive electricity in all kinds of weather, and fituations, this

[^13]is the moft powerful and convenient machine that has yet been invented.

Before we begin to ufe the machine, it may be neceffary to lay down a few electrical axioms. ift. All natural bodies are divided into two claffes, electrics and conductors. Electric fubftances, fuch as glafs, air, filk, \&c. will not tranfmit electricity, but with difficulty, and fhort diftances : conductors, fuch as metals, water, \&xc. do tranfmit it. 2d. Conducting and non-conducting fubftances rubbed together, appear to be both electrified, but poffeffed of very different quantities; as when glafs is rubbed with a piece of leather, the glafs will be found in a pofitive, plus, or condenfed ftate; the leather in the negative, minus, or rarefied ftate. $3^{\text {d. . By this we }}$ are not to underftand that there are two electricities, though called by fo many oppofite names. Electricity and lightning are one fluid; probably, as before obferved, an emanation from the fun's atmofphere ; and by pofitive and negative is only meant more or $l e / s$ of one and the fame fluid. 4th. Bodies poffeffed of the fame electricity, whether pofitive or negative, repel each other: poffeffed of different quantities, they attract each other. $5^{\text {th }}$. When bodies too heavy to be drawn by electrical attraction come near an electrified body, they inftantly become poffeffed of an electricity contrary to that of the electrified body; i. e. the electrified body difturbs, repels, or drives away the natural latent electricity of the body towards the end fartheft from the excited conductor. 6th. When electricity enters a point, it appears a ftar in the dark: when it iffues from a point, it is like a brufh. In the laft cafe it often flames from the rubber of the machine, into the air, when not carried off faft enough by the points of the conductor. 7 th. An electric atmofphere not only repels another electric atmofphere,
but it will alfo repel the electric matter in the fubftance of any body it approaches; and, without mixing with it, force it to a further part of that body.

If a chain be hung to the negative conduclor b, fig. 9 , Plate XXIX. reaching to a moift floor, wall, or any conducting matter communicating with the earth, and the cylinder be turned, fparks may be taken by the knuckle, or any piece of metal, from the prime conductor c, at two, three, or more inches diftance.

That electricity after penetrating through the atmofphere, and approaching the earth, has its affinities like other matter, and becomes a latent principle in bodies till called into activity by frictions or heat, is more than probable, from the readinefs with which fome bodies part with it, and the tenacity with which others retain it. Hence the earth has been confidered as the grand refervoir of electricity; and, therefore, that a metallic communication between the rubber and the earth was neceffary as a road for the fluid to the machine. The friction at the rubber draws from the earth a portion of its natural electricity, which forms an atmofphere round the glafs cylinder, and is fupplied by the communicating chain hung to the negative conductor b. This atmofphere is attracted by the metallic points of the prime conductor c, and conveyed by them from the cylinder to the furface of that conductor, which becomes pofitively electrified; i. e. poffeffed of more electric fluid than it poffeffes naturally. This fuper-quantity will endeavour to get back to the earth, or equalize itfelf with any conducting body near it; and hence it darts into my knuckle, or into any metallic fubftance I hold in my hand, making the conducting moifture of my
body a path-way back to the ground, to which it has a ftrong affinity.

2d. I now take the chain from the conductor b, and hang it on the conductor c, which will then give no fparks; but when I addrefs my knuckle towards b, fparks will again feem to ftrike me; but, in reality, they now dart from my hand to the negative conductor: I then convey the fluid from my feet to my hand, as before I conveyed it from my hand to my feet, as will be proved hereafter.

3d. I now take the chain away, and the whole machine is then infulated from the earth, as all its parts are fuftained on non-conducting glafs pillars. I alfo ftick into the conductor b the wire z, bringing its knob within three or four inches of that in the conductor c. On turning the cylinder, ftrong fparks dart from the knob q to the knob p. How is this, when the whole apparatus is cut off from any communication with the earth, the grand refervoir of electricity? The conductors contain a natural quantity; but by the excitation, the conductor and rubber b becomes minus, or robbed of a portion of its natural quantity; while the conductor c receiving it, becomes plus, pofitive, or poffeffed of more than its natural quantity : hence the pofitive knob, q, delivers back to the negative knob, p, its fuper-quantity, in vivid fparks. This fhews that bodies do not lofe their natural electricity by being infulated from the earth. For where this natural quantity remains undifturbed, no electric figns appear; but when it is difturbed, as in the above experiments, then one part becomes condenfed, another rarefied; it is in a fate of redundancy in one place, and in a ftate of deficiency in another; but each makes an effort to meet the other, to reftore an equilibrium, and then all is at peace.
$4^{\text {th }}$. If the wire $z p$ be ftuck in its conductor, fo that its knob may be about an inch from the ground; and a fimilar wire and knob be ftuck in the conductor c, fo that its knob may alfo be about an inch from the ground;-fo foon as the excitation begins, electricity will jump from the earth to the negative knob, and at the fame inftant from the pofitive knob into the earth; one drawing it from the earth, the other delivering it back to it.

SECTION III.

On Points.

THAT points, attached to conductors, both receive and deliver the electric fluid more eafily than flat or round bodies, is evident from this experiment:-Hold the knob of a brafs rod at fuch a diftance from the prime conductor, that fparks may fly to it; then prefent the point of a needle to the conductor at twice the diftance of the knob, and the fparks will ceafe; remove the needle, and the fparks will be feen again ; prefent the needle, and the fparks difappear again: certainly fhewing that the needle draws off the fluid in a ftream filently; which may be feen like a ftar on the point of the needle, when the excitation is performed in the dark.

2d. Fix a wire, with a fharp point, into the end of the prime conductor, and hold a knob, or your hand, near it; no fparks will enfue; but a cold blaft will iffue from the point that will turn light mills, or wheels, as fig. 10, Plate XXIX. which is a round
piece of cork, with the feather ends of quills ftuck in it; a fmall needle is fixed in the centre of the cork, fo that the whole can be fufpended by the magnet m. On the cylinder being turned, an aura will iffue from the pointed wire w, that will blow the wheel round with great fwiftnefs.

3d. If another point be held half an inch from the point juft mentioned, a beautiful fream of fire will be feen running from the electrified point into the other, producing a crackling kind of noife.

4th. Let the needle n, fig. 11, Plate XXIX. be ftuck perpendicularly into the prime conductor, with the four wire arms fufpended on its point: if the ends of thefe arms be filed into points, and turned at right angles horizontally, and all in the fame direction, when the machine is turned, the arms will whirl round, and exhibit a ring of fire in the dark. This is occafioned by the refiftance the air gives to the electric aura, fpouting out at the four points.

5 th. If one piece of wire be bent as the two were in the laft experiment, and fufpended on a point, infulated by the glafs fupport a, fig. 12, Plate XXIX. and from one of the arms a fmall glafs clapper be hung by a filken thread, c, and the glafs fupport be ftuck in the centre of eight furrounding bells; a chain being hung from the prime conductor, almoft to touch this apparatus at s : when the machine is put in motion, the wire will circulate, and ring the eight bells. This pleafing effect depends on the fame caufe as the laft. The chain being electrified, communicates electricity to the fufpended wire; and as that is fup-
ported by glafs, and the clapper by filk (both electrics, or nonconductors), the fluid has no-where to efcape, but from the points of the fufpended wire; where its aura meets a fufficient reaction from the air to pufh it round.

6th. The electrical orrery is another device dependent on the aura that ftreams from electrified points. On a wire bent, pointed and balanced as the laft, let a fmall globe of glafs be fixed, over its centre, as a, fig. 13, Plate XXIX. to reprefent the fun : into one end of this wire let there be fixed a fmall well-pointed wire, half an inch long, and ftanding perpendicularly. On this wire the earth and moon's wire is fufpended, as w in the figure : this wire is alfo bent like the letter z, having a round pith ball fixed on its centre to reprefent the earth; and a fmaller, fixed on one of the angles, to reprefent the moon; the whole fuftained by the glafs b. When the chain c is fixed to the conductor, and the machine is excited, the fun will turn on its axis ; the earth will have its diurnal and annual revolutions; and the moon will accompany the earth, making twelve revolutions round it, while the earth makes one round the fun.

7 th. That this power is fo confiderable as to counteract the power of gravity in light bodies, is curioufly exemplified in fig. 14, Plate XXIX.: a wire, having its ends pointed, and bent in contrary directions, like the laft, is fixed to an axis of the fame kind of wire, perpendicular to the direction of the points; this axis laid on the two parallel inclining wires c and d, will roll down them by its own gravity: but when it is nearly arrived at the bottom, if the machine be put in motion, the axis will return, rolling up the inclined plane. N.B. The fupports a and b muft be of folid glafs.

More has been faid on this part of electricity than may be thought neceffary ; but, connected as the fubject is with thofe pointed rods ufed for the prefervation of our dwellings from the effects of lightning, they have been confidered as properly introductory.

From the eafe with which electricity enters into, and iffues from, points, together with its ftrong affinity to metals, it was a natural fuggeftion, that long metallic rods, terminating in one or more points, would draw lightning from the atmofphere filently, or in a progreffive ftream, and thereby prevent the mifchief it often does when obliged to come in a body upon houfes, trees, or fubftances that are bad conductors. For where conducting nails, iron cramps, bolts, locks, tongs, \&c. are at a confiderable diftance, lightriing feems to accumulate its force in proportion to the difficulties it has to encounter, or to the length of the non-conducting matters that feparate one conducting body from another. Thefe are the fituations, where buildings, \&c. fuffer from lightning. Accordingly, to prevent this, long rods of iron, about three fourths of an inch diameter, are fcrewed to the ends of one another, fo as to reach about five feet above the top of the higheft chimney of the houfe, and to go, as ftraight as the building will admit, down to the ground, into which its other end ought to penetrate five feet, fo as to be always in conducting moifture. Leaden fpouts, gutters, the fheet-lead covers on the hips of houfes, are all good conductors ; and if iron rods be fixed againft the chimneys, and join the fpouts and gutters, fo that there be an uninterrupted continuation of lead or other metal into the ground, thefe are as fecure conductors as the iron rods. N.B One conductor feems only to fecure a building to the diftance of about ten yards around it; for at fifteen yards from a conduc-tor a building has been ftruck.

In what manner points operate upon lightning, or electricity, has
been matter of much ingenious conjecture. When a fpark is taken from a large conductor, it is larger and more intenfe than when taken from a finaller conductor, diminifhing in fize and brightnefs, but increafing in length, as the conductor diminifhes; fo that when the conductor ends in a point, the fark becomes ininvifible, but of fuch a length, that it is felt on the face like a cobweb at feveral feet diftance. Suppofe the electric atmofphere round the conductor a, fig. 1, Plate XXX. to be reprefented by the fpotted lines, then may the aura be felt at c on the hand, and on the face (as above) at four or five inches diftance; being thus repulfed into the air, or to conducting fubftances near it. The attraction which the conductor has upon the electric matter on its furface being, therefore, as that furface, and a point having no furface, the electricity can more eafily enter into, or efcape from, a point, than from a flatter body. When a fhaggy feather is laid on the prime conductor, and the machine put in motion, the fibres of the feather will dart out radiantly, and prefently it will take its flight from the conductor. The feather (though a very imperfect conductor) confifts of fo many fibres and points, that the electric matter can eafily iffue through them; and by electrical repulfion fpread out the fibres: but when the feather becomes filled with electricity, a repulfion between it and the prime conductor takes place, and it is thrown off to any neighbouring body that will take from it its fuperfluous electricity: it then becomes fufceptible of being attracted to the prime conductor again, and becomes a carrier of electricity from it to the neighbouring bodies. But if while the feather ftands erect on the prime conductor, the point of a needle be held at a foot diftance from it, the feather will inftantly cling to the conductor, as if afraid of the point. The point being of metal, is a better conductor than the fibres of the feather. Now if a feather, a, be fluck in the end of the prime conductor, fig. 2 , Plate XXX .
and electrified, the fibres will become radiant, and have a repulfion in the direction of the arrows $c z q$: but if a point, d, be prefented to it, a fream of electricity will iffie from the feather to the point, and, by crowding to it, become condenfed at d : that condenfation will increafe the repulfion of the point, and particularly in the contrary direction of the ftream * ; fo that the repulfive power $d s$, being greater than the diffufed repulfion a, z, will drive the feather back, and make it cling to the conductor as if afraid of the point.

Perhaps there may be fomething in the polifh, and difpofition of the pores, in a point, that is more friendly to the receipt and delivery of electricity than in flatter bodies; for we find that it makes greater efforts, and feems to have more difficulty in making its way into large knobs than into fmaller ; fo that a point being the leaft poffible furface, electricity muft needs enter it with the leaft difficulty, if made of conducting matter. Hence as the clouds may be confidered as the outfide coating of a Leyden jar, and the earth as the infide coating; and the non-conducting air between them as the glafs of the jar ; the fig. 3, Plate XXX. may affit the young electrician to conceive how a pointed conductor draws lightning from the clouds.

On the Attraction and Repellency of Eleatricity.

Electricity attracts all kinds of bodies, and is repulfive of itfelf. A feather hung by a filken thread within a foot of an electrified conductor, will be attracted to it, and inftantly repelled. The electric atmofphere which adheres to the conductor, attracts the feather;

[^14]a portion of that atmofphere immediately adheres to, and furrounds, the feather: now as the electric fluid is repulfive of itfelf, and the feather has acquired an atmofphere, as well as the conductor, the two atmofpheres repel each other, as the arrows in fig 4, Plate XXX.
ed. Thus, if four fmall bells be fufpended by wires from two brafs wire arms, d and o, fig. 5. Plate XXX. and on thefe arms be hung four clappers by filken threads, at a proper diffance from the infulated central bell a (the fupport c being folid glafs); if then a chain, g, form a communication between the wires and the prime conductor, and the machine be put in motion, the clappers will begin to move fwiftly between the four electrified bells and the bell a, ringing the whole five. The four outfide bells, communicating with the prime conductor, will be in a pofitive fate, while the bell a will be in its natural fate, becaufe its fupport e is of metal, and communicates with the earth, by means of the table, the floor, and walls of the room. The clapper z being attracted to the bell q, receives an atmofphere of electricity, by which it becomes repelled from q, and attracted by a where it delivers its atmof phere, and becomes liable to be attracted again : hence the clappers are the carriers of electricity from the electrified bells to the bell a, which keeps altogether in its natural ftate, as the fand e conveys away the fiuid as faft as the clappers deliver it.

3d. Cut a few fmall figures in thin paper, as fig. 6, Plate XXX. and place them on the fimall metallic table c : let a thin plate of brafs, as d, hang from the prime conductor juft above the figures. When the machine is excited, the figures will get up and dance in a
whimfical manner. The caufe of which muft appear, from what has been faid, to be the attraction of the electrified plate d, to which the figures jump, and are inftantly repelled back to the table c; fo that they become the piece-meal carriers of the electric matter from d to c.

4,th. While the machine is in motion, put the knob of the prime conductor into the glafs receiver a, fig 7, Plate XXX. making the knob touch all the interior furface of the glafs; then fuddenly place it over a few fmall pith balls on the above table, when inftantly the balls will begin to fly about the glafs, and with a laughable commotion continue to do fo for feveral minutes. When they ceafe, if a hand touch the glafs, they begin to fly about again, and fo on for feveral times. We fhall fee by the Leyden vial that the receiver was charged with condenfed electricity on its infide, and negative on its outfide ; and in that ftate was placed over the pith balls: the balls were attracted to the abundant fide, and inftantly repelled down to the table, as in the foregoing experiments, carrying off by degrees the pofitive quantity to fupply the negative fide. But when the equilibrium is nearly reftored, the electricity becomes too weak to affect the balls, and they ceafe to jump: if then a hand or piece of metal touch the glafs, they begin again; becaufe a better conducting road is made between the in and out fide of the glafs, fo that the remaining electricity can make an exertion by means of the balls, the table, and the perfon who touches the glafs, to make its way to the outfide.

SECTION IV.

On the Leyden Vial.

THIS aftonifhing vial derives its name from the place where its effects were firft difcovered. It is a glafs jar or bottle, coated both within and without, to the diftance of two inches of its brim, with tin foil, fixed on with pafte or gum-water. It has a thin cover of baked wood, through the centre of which is ftuck a ftrong wire, terminating in a number of fmaller, that touch the infide coating of the jar ; the top of the ftrong wire terminates in a brafs knob, a, with a hole on its top to hold an electrometer*, fig. 8, Plate XXX. When the knob a cominunicates with the prime conductor, and the machine is excited, the ball c of the electrometer will feparate from the ball a; and when its rod ftands horizontally, it indicates that the jar is fully charged. If then one knob of the difcharging rod touch the outfide coating, and the other approach the knob a, when they come within an inch of each other, an explofion will take place between them.

The caufe of this ftriking phænomenon has been varioufly accounted for; but as I have made it a rule through this work not to incumber it with divers opinions, or take up the reader's time with their inveftigation, I proceed to adopt that explanation which feems to me moft agreeable to nature, analogy, and phxnomena

[^15]founded on the obfervation and experience of above forty years. When a Leyden bottle is hung to the prime conductor, by a wire touching its infide coating, and its outfide coating touches only the air, it will not receive a charge. The air, as well as glafs, has fo ftrong an affinity to electricity, that it parts with it with great difficulty ; and being in general faturated with it, receives it with equal difficulty. Hence when electricity is excited, it adheres to the furface of the prime conductor for fome time before the air (or perhaps the moifture in the air) can carry it off; and the interior furface of the bottle being in the fame fate, will have its electricity carried off alfo: when the difcharging rod, therefore, makes the communication between its in and out-fide coatings, little or no electricity appears. But when the outfide coating touches any conducting fubftances that communicate with the earth, the rubber, or negative conductor ; and the infide coating communicates with the prime conductor ; the jar, or bottle, will charge and difcharge as above. In the firlt place we muft confider the electricity inberent in the glafs as increafed and difturbed by that thrown on its inner furface by the machine: accumulated on that furface, a proportional quantity is forced through the glafs to its other furface into the conducting fubftances that touch the outward coating, as indicated by the arrows, fig. 8, Plate XXX.; hence the infide is faid to be plus, and the outfide minus; or pofitive and negative: or, to be more explicit, the infide furface is in a ftate of fuperabundance, and the outfide furface is in a fate of want. When, therefore, a metallic communication is made between the in and out-fide coatings, the fuperabundant electricity (fo induced upon the inner furface) makes an effort to reftore the equilibrium of the two fides, by darting from a, the pofitive knob to e, the knob that communicates with the negative fide of the jar ; this ftream,
joining the propelled electricity, reprefented by the darts, fig. 8, Plate XXX. both return to the outfide, and the equilibrium is reftored with a flafh and explofion at $a c$. The tin-foil coating only diftributes the electricity equally over the furface of the glafs; for glafs may be charged without any coating, as in fig. 9, Plate XXX. where a blunt-ended wire, a, hangs from the conductor d, within half an inch of the plate of window-glafs g : when the machine is excited, a brufh of electrical light will fall from the wire a on the glafs for a few feconds, and then ceafe; but if a blunt-ended wire, n, be held oppofite the wire a, about half an inch from the under furface of the glafs, the brufh will re-appear, as well as a ftar on the blunt end of the wire n. After fome time thefe effects will ceafe : but if the glafs be moved fo that the wires a and n may be oppofite on various parts of its furface, the whole of the upper furface will be charged pofitively, and the under furface negatively, and a metallic communication between the two fides will produce a flafh and explofion, the fame as a coated jar.

2d. If a loofe coating, or patch, of tin-foil be laid on the glafs when fuftained by a hand underneath, and the patch be electrified, and then fhook off the glafs, the other hand, applied to the place where it lay, will receive the electrical fhock.

The brufb indicates the delivery of electricity ; the ftar its reception: fo that it is ocular, that the upper furface of the glafs, in the firft experiment, had the electricity forced or induced upon it, while an equal quantity was propelled from the other furface into the wire n. If the glafs, fo charged, be removed from the machine, and a crooked wire, with its fharp pointed ends, be held in the pofition 0 , fo that each point may be half an inch from the upper
and under furface of the glafs, the electricity will return from the under to the upper fide, making a brufh below, and a ftar above; thus the equilibrium is reftored.

Glafs and air being non-conductors, it is difficult to force clectricity out of glafs into air, by any accumulation : hence the neceffity of conducting fubftances being joined to the oppofite fide of the glafs, or jar, to that on which the electricity is induced. Suppofe $a c$ one fide of a plate of glafs, and $d e$ the other, fig. 10, Plate XXX., and that the natural electricity in the glafs, and in the air on each fide of it, was reprefented by darts, both being in a quiet ftate.-But now we will fuppofe this quiet flate to be difturbed by the near approach of the electrified conductor D, fig. i4, Plate XXX. from which electricity will be repelled in the direction of the darts $r s$. This will difturb and repel the electricity within the glafs plate $n o \approx q$ to the pointed metallic receiver E. If now the glafs plate be removed, the fide $n o$ will be found in a condenfed flate, and the fide $z q$ in a fate of want; and a metallic communication between the two fides will produce the electric flath and report. This I hope may be conccived as a picture of what paffes in the glafs of the Leyden bottle, when expofed to accumulated or condenfed electricity ; and alfo the theory of charging plates of air, of wax, of cryftal, of refins, and all other electric bodies.

That plates of air can be charged like plates, or jars, of glats, is evident from the experiment, fig. 11, Plate XXX.: a is a circular fmooth board, of two feet diameter, fufpended from the prime condutor by the chain g; it is covered with tin-foil, and hangs a few inches above a fimilar board covered alfo with tin-foil, which communicates by conducting fubftances with the earth. If the machine be put in motion, the chain g and plate a will be pofitively
elcctrified, and repel the electricity of the plate of air between the boards a and e into the board e, and the fubftances in contact with it ; a, therefore, reprefents the inward coating of the jar, fig. 11, Plate XXX . and the board e the outward coating: if one knob of the difcharging rod touch the board e, and the other the board a, the flafh and report will take place as with the Leyden jar ; or if one hand touch the board e, and the other the board a, the electric fhock will be felt; proving that the plate of air between a and e can be charged the fame as glafs.
N.B. The edges of the boards floould be made round and fmooth, for edges and points difperfe electricity : and if the upper board were fufpended from the ceiling of the room by filken cords, fo much the better.

2d. Two rulers, like two black-lead pencils, are covered with tin-foil, and fuftained on the glafs pillars a and b, fig. 12, Plate XXX. From the end of each ruler hang two pith balls by fine flaxen threads. When thefe rulers touch each other, as in the figure, and a clean warm glafs tube, z, be rubbed with a dry filk handkerchief, and held in the pofition as in the figure, and fo to have a plate of air between it and the end of the ruler a, the natural electricity contained in the two rulers will be repelled towards their extremity, as denoted by the darts. If, while their electricity is in this difturbed ftate, the pillar b be removed from a, its ruler and balls will be found in a pofitive ftate, while thofe of a will be found negative, or in a fate of want: this may be proved by bringing the excited tube z within a few inches of the balls fuftained by the pillar b, which balls will be repelled; but if the tube be brought near the balls fuftained by a, they will be attracted. It has before been obferved, that electricity repels itfelf; and attracts, or is
attracted, by all other bodies. Hence the balls fupported by b, being in a pofitive ftate, repel each other, and thofe fupported by a feem alfo repelled; this arifes from being deprived of their natural quantity, and foliciting a fupply from the furrounding bodies, towards which they have a natural attraction. If the experiment be made with an excited ftick of fealing-wax, the fame appearances take place, though with contrary electricities; for now the natural electricity of the two rulers is attracted torvards the end over which the wax is held, to fupply the wax's deficiency, and that end will be found pofitive, while the other end is negative. For the earth, the air, water, and every fubftance contained in each, will generally be found naturally in a pofitive fate; and that matter, difturbed by excited glafs or wax, exhibit its phenomena from the before-mentioned principles, viz. That excited glafs acquires electricity from the Jubftances with wobich it is rubbed; and excited wax lofes a portion of its natural quantity by delivering it to the rubber.

3d. Fig. 13, Plate XXX. is a fmall coated jar, ftanding in a cup of tin, and fupported by the folid glafs foot s. From the knob communicating with the infide coating of the jar, there projects a wire, fuftaining, by fine flaxen threads, the pith balls z; and from the tin cup, a wire alfo fuftains a pair of pith balls. I take the jar out of the cup, and touch an electrified conductor with its knob, and the balls z inftantly feparate : I then replace the jar in its cup, and the balls remain feparate; but if I touch the knob a, the balls z clofe, and the balls x open: if I take my finger from a, and touch the outfide coat of the jar, the balls x clofe, and the balls z open ; fo that if the in and out-fide of the jar be alternately touched, the balls will feparate and clofe alternately for hundreds of times. Here, then, is a proof that there is an influence operating in, and through, the texture of the glafs, though we confider glals as a
ron-conductor. 'To explain this, it will be neceffary to obferve, that by touching the electrified conductor with the knob a, the jar became pofitive on its in, and negative on its out-fide, agreeable to what has been faid on the Leyden jar: in this fate it was infulated in the tin cup, by the glafs leg s. I now touch the knob a, and carry off (by the conducting power of my body) a portion of its pofitive electricity, and the balls z clofe by that lofs. What, then, has paffed in the texture of the glafs? The electricity, forced towards its outfide by the charge, now returns towards the infide, and leaves the outfide more negative than it was; hence the balls x diverge in fearch of electricity to fupply their want: I then touch the outfide, and, by fupplying that want, the balls x clofe : but now the electric matter vibrating towards the inner fide of the glafs (with a kind of flux and reflux), a weak pofitive again feparates the balls \approx. By touching the knob a, the balls x again become negative, and expand in fearch of electricity: and as the furrounding air (if dry) is not difpofed to part with it, the effort will continue for a confiderable time, \&rc. \&xc.

I conceive thefe to be decifive experiments in favour of glafs and other electrics poffeffing a fuperabundance of electricity, naturally; of their retaining it with a ftrong chemical affinity ; of its liability to be difturbed, compreffed, or forced, by ftronger condenfations from powerful electrical machines, or lightning ; and that forcing this power is fomething like the forcing wool, or other elaftic fubftances, into a package already full ; or compreffing water into a metallic veffel, fo full, that the fuperabundance muft be fqueezed through the metal.

(3I)

L E C T U R E VIII.

SECTION I .

Of Spontaneous Electricity.

THOUGH this mode of exhibiting electricity appears to be without friction, it is only fo where it paffes between bodies containing unequal portions of it. The tourmalin is a red-coloured femitranfparent foffil found in Ceylon, that has the property of fhewing figns of electricity, by being warmed, or heated, differently from other electrics. When heating, one fide is pofitive, and the other negative ; when cooling, that which was pofitive becomes negative, and the other pofitive. Is not this becaufe it is an electric that holds its electricity fo loofely, that the friction occafioned among its parts by heat, is fufficient to excite, and give it motion? If a piece of window-glafs be laid on a warm poker, and the tourmalin on the glafs, the glafs will become negative, and the fide of the fone touching it will be pofitive. Is not this another inftance of the relationfhip between common fire and electricity? The heat excites the tourmalin, and qualifies it to abforb electricity from the glafs; the glafs of courfe becomes negative, while the foffil is in a ftate of condenfation.

Electricity does not appear over the whole furface of the ftone, but only on two oppofite fides, like the poles of a loadfone; fo that its virtue lies in the direction of its ftrata, and, therefore, is capable of being forced, or drawn, to or from one pole towards the other, by heating, cooling, or friction. When put in the fire, it covers itfelf with afhes; when rubbed with filk it emits ftrong flafhes; and is luminous when warmed in the dark: fo that changing the degree of heat, is what excites the ftone.

2d. Sulphur melted in a glafs veffel exhibits fpontaneous electricity ; the glafs is pofitive, the fulphur negative. If poured into a metal cup, and left to cool, it fhows no figns of electricity; but feparated from the cup, the fulphur is plus, the cup minus. So melted chocolate, as it cools in the tin pans, is ftrongly electrical. Thefe, and many other fubftances, are fo expanded by heat, that when they cool and contract, a friction takes place fufficient to excite electricity.

3d. Vapour carries off latent electricity. Place a metal cup, a, on the electrometer* c, fig. 1, Plate XXXI. with a little water in it; if then a red-hot coal be dropped into it, a vapour will arife that will carry off a portion of electricity from the cup, the cap, and the leaf-gold. The leaves will inftantly part, and fly to the flips $s s$, to fupply their lofs; of courfe they become in a ftate of want, or in a ftate of negative electricity : but the wire p, held by the fealingwax, or glafs, q, in the vapour, will have its pith balls d, part with

[^16]pofitive electricity. Here it is evident that vapour carries off electricity from water, or whatever elfe it is in contact with; and perhaps the vapour derives its volatility from its union with electricity, for it is obfervable, that if infulated pith balls be fufpended in a fog, or mift, they feparate fpontaneoufly with pofitive clectricity.

4th. If an hollow cone of tin, as fig. 2 , Plate XXXI. filled with a quantity of coiled-up wire, be held by the glafs handle a, over the infulated vapour, or flame of molten refin and bees-wax, the electrometer balls, c, will part with negative electricity ; thefe being fubftances when excited that attract electricity from the bodies they touch, and therefore are faid to produce negative electricity.

Smoke, as well as heated air, refifts the paffage of electricity: flame greedily abforbs it. Fix a Leyden bottle to the end of a metal rod, which will ferve as a handle ; let the bottle be charged, and paffed rapidly through the flame of burning paper, ftraw, or any other comburtible, and it will be as effectually difcharged, as if the difcharging rod made a communication between its out and in-fide coating : pafs it in the fame manner through finoke, and it will remain charged : but if held charged in an hot oven, it will lofe its charge as before. Do not thefe effects imply the relationfhip between electricity and flame, or fire? Is not flame a conductor from that affinity, and from difplacing the non-conducting air?

6th The conducting power of flame is beautifully exemplified, by bringing the knob of a charged bottle near the flame of a candle, as fig. 3, Plate XXXI. If the knob a communicate with the outfide coating of a charged jar, and the knob c with the infide coating, and each be held two inches from the candle, and oppofite
each other, the flame will fpread towards each, and a difcharge will be made through it: fhewing that the weak negative will make an effort to meet the ftronger pofitive, as if their power were equal.

SECTION II.

Of Ligbtning.

THIS might be confidered under the head of fpontaneous electricity ; for that lightning is electricity, there can be no doubt, from their effects being the fame. If a kite be held in the wind by a fmall foft iron, or copper wire, inftead of a ftring; and the wire be coiled round a ftrong rod of folid glafs, held in the two hands; fparks may be taken from this wire, and jars charged as by a common electrical machine. In making this experiment, it is neceffary to let a key hang by a wire from that which is coiled up, fo as to touch half-a-crown, or any plate of metal lying on the ground ; by lifting the key a little from the plate, a fream of fire will be feen between the key and the plate. But if a fenfation, like a cobweb, on the face, takes place, it will be prudent to throw down the glafs rod, and leave the kite to itfelf. The effect takes place, whenever a kite can be raifed, and at all times of the year. 2d. If a long wire fcrewed into the knob of the Leyden bottle, and pointed at its extremity, be held aloft in the open air at night, when thunder and lightning is near, a far will appear on the point;
and if the other hand touch the wire, a fhock will be received. 3 d. Iftand on a glafs-footed ftool, fig. 9, Plate XXXI. with a fifhingrod (covered with tin-foil, and with feveral points at its extremity) in my hand: if the feet of the ftool are very dry and clean, when the rod is held out at the window, or up in the air, it feldom fails to attract an electric atmofphere, and put me (in general) in a pofitive ftate, which is indicated by touching the electrometer, and trying whether the leaf-gold opens with pofitive or negative electricity. A fmall lighted torch fixed to the fifhing-rod, as at c, affifts the extraction of electricity from the air ; perhaps by rarefying the air around it, and thereby relaxing the ftrong union between the air and electricity; and may account for the lightning always feen to dart downward through the flames of Vefuvius and Ætna when in a ftate of eruption. 4th. Animals killed by lightning, putrify in a very flort time; fo do thofe killed by electricity : perhaps, in both cafes, by their blood veffels being ruptured, or by the vacuum formed by the quick defcent or explofion of the lightning; for often men and animals have been killed by lightning, when neither wound nor rupture could be found on their bodies.

The identity of lightning and electricity being thus eftablifhed, let us try to form a conjecture, from whence it comes and whither it goes. Hitherto we have confidered light as the primary emanation from the fun; but as I hope it has been proved that fire, light, and electricity, are but modifications of one and the fame principle, it is no great deviation from the firft hypothefis, to conceive electricity rather as the matter of the fun's atmofphere, and which, by its natural repulfion and the fun's centrifugal motion, becomes projected from him into infinite fpace, where it meets and mixes with fumilar emanations from other funs; fo that all
fpace is probably filled with this fubtil and powerful matter. Though the momentum of light might feem (from what has been faid on that fubject) too inconfiderable to give annual and diurnal motion to the planets, here we have an emanating principle, whofe power is irrefiftible, and equal to the tafk of giving motion to a world! and perhaps the vivifying fpirit to its plants and animals. The part of this fubtil matter that impinges on our earth, meets firft the uppermoit region of the atmofphere, which is a conductor, and admits the fluids (for thin or rarefied air conducts electricity); but as it approaches the lower and more denfe part of the atmofphere, it meets increafing refiftance, and is often obliged to force its way through the non-conducting lower regions; producing the terrible corrufcations and explofions of thunder and lightning. For the air being elaftic, it will give way, and act like a cufhion to the impetus of folar electricity, thereby communicating the electrical momentum more equally to the folid earth: this ftream being probably unequal from croffing other ftreams, from fpots on the fun, which do not project repellent matter, \&c.; for it is now afcertained that what we call fixed fars (which are conceived to be funs) are not fixed, but feveral have been found to alter both their latitude and longitude in the courfe of an obferver's life, and therefore their ftreams muft crofs differently; fometimes friendly to the motion of their projected electricity, and fometimes to its retardation. In the clouds electricity meets with a receptacle (for water admits and conducts it), and when thofe clouds are not overcharged, the air is in peace. Now if we confider the clouds as one of the coatings of the Leyden vial, the lower denfe air as the glafs, or electric, and the earth as the other coating, we may contemplate the Leyden bottle upon a grand fcale, producing thunder, lightning, earthquakes, and the aurora borealis !

Fig. 3, Plate XXXI, a, is a portion of the earth's furface ; c, the lower non-conducting part of the atmo [phere ; d, the clouds; g, the pofitive electricity of the clouds, met by the negative, q, of the earth; n, the explofion; $z z$, the electric ftream from the fun. When the air is very dry, and much faturated with electricity, it refifts the entrance of more; and hence the reafon why thunder generally follows fuch weather, and is more prevalent in fummer than winter. When the air is moift, electricity finds an eafy paflage into the earth, without commotion ; and hence the earth has been generally confidered as the grand refervoir of it; and from that refervoir we pump it by electric machines and other frictions, being incapable, by fuch means, of exciting much from the air. When the rays of electricity, therefore, come the moft directly on the earth, as in fummer, a greater quantity may be poured on the dry air than it can conduct, and hence the clouds will be in a condenfed or abundant ftate, while the earth, comparatively, may be in a negative ftate; the confequence will be a violent effort to reftore equality by a form of thunder and lightning; and the air near the earth will be found pofitive and negative by fits, while the ftorm lafts. When the clouds are fcattered at a diftance from one another, the lightning is often feen darting from one to another, where the air is too rare or thin to form much refiftance to its paffage, and then we fee lightning without hearing thunder. When the electric ftream from the fun falls obliquely on the earth's atmofphere, as in winter, it is feen freaming through the upper regions of the air toward the north, and is called the aurora borealis, ftreamers, or northern lights. The fame phenomenon is alfo feen towards the fouth pole of the earth, when the folar ftream darts obliquely upon it, or makes a chord with the atmofphere. This phænomenon is never feen in
or near the torrid zone, becaufe the fun's rays fall direct upon thofe parts, inducing electricity on the upper, and forcing it through the lower regions of the air into the earth, where it lies quiefcent till called forth by frictions or affinities. One of thofe affinitics is water, to which it adheres with great affection, feparating its particles, and giving them volatility. And though they rife together through a medium, conceived to be already full of electricity, yet as the particles of electricity repel each other, and that repellency is increafed by the heat the opaque earth receives from the fun, the evaporation goes on, water rifes through the air Hying on the wings of electricity, till it arrives in thofe cold and rare regions that are conductors of electricity (for air approaching to a vacuum is a conductor). To this rare, or thin air, electricity has a greater affinity than to water; the water becomes forfaken, and its particles attracting each other, form little affemblages, at a fmall diftance from each other, and appear as clouds. Thefe affemblages increafing, foon become fpecifically heavier than the air in which they float, and begin to defcend; picking up more, they become drops, and fall to the carth. That evaporation is thus carried on, may be proved by hanging a pair of fmall pith balls, by flaxen threads, in a receiver, and electrifying them pofitively: if the receiver be placed on the air-pump, aid exhaufted, the balls will clofe ; but when the vapour becomes decompofed, and defcends in the receiver, the balls open with negative electricity; fhewing that the rarefied air abforbed the electricity, and left the water to which it was united: thus forfaken, both by the air and its electricity, it falls, within the receiver, a real fhower of rain. A precipitation of fnow is but the above little affemblages of water frozen and fticking together in flakes. This phanomenon is often produced artificially in crowded affembly-
rooms at Peterfburg, by letting in the cold air from the top of the room, which will fuddenly condenfe the floating vapours, and make them fall in fmall flakes of fnow. Hail is a frozen drop ; or often feveral drops united into one great hail-ftone.

That lightning may fometimes' break through the atmofphere to the earth, when thick clouds, one above another, make a conducting road for it, is very confiftent with its nature. Such clouds generally appear when a waterfout takes place; which begins like a fpiral pipe from the loweft cloud, and defcending towards the fea is met by a whirling protuberance of water from the furface: this I take to be the electricity of the water, making an effort to meet that of the clouds; (for the negative electricity of a charged jar will endeavour to meet the pofitive with as much energy, as the pofitive will the negative). If we, therefore, conceive a ftrong ele?tricity from the cloud met by a weaker from the fea; and that the track made both by the afcending and defcending electricity will be a vacuum in the air, to which the winds will rufh in all directions, and form a whirlwind; water, either afcending or defcending, in fuch a vortex, will neceffarily be formed into a pillar-like figure. When thefe effects take place over the land, we find the earth torn up, as if blown up by gunpowder, and a whirlwind commences at the place. Sometimes the effect is progreffive; then have we waterfpouts travelling from the fea, and breaking in a deluge upon the land. When this progreffive whirlwind happens in a wood, we find viftas made through it by trees torn up by the roots, broken and thrown in all directions! Such is the power of this wonderful agent.

It is obferved, that earthquakes only affect the outward furface of the earth; that mines, and even wells and fprings, are little
injured by them; and that the tremulous motion is quite external. It follows that they are not occafioned by internal explofion. (This is to be underftood of earthquakes that happen at a difance from volcanic matter; for internal caufes may then operate.) What power in nature, then, is capable of producing a vibratory motion over many fquare leagues of the earth's furface? I think accumulated electricity. The air preceding the earthquake is always hazy, but not like the hazinefs occafioned by moifure ; it feems furcharged with fiery, rather than aqueous vapours. The atmofphere is of a red colour; the air is ftill ; birds, beafts, and all nature feem aware that fomething terrible is approaching. The firft fhock is as if the earth vibrated to and fro; or, as if waves like the fea heaved up the earth progreffively. This cannot be the effect of internal explofion, becaufe no internal mifchief or derangement takes place. May it not be an overcharged atmofphere, labouring to difcharge its electricity into a dry earth, ill difpofed for its reception? for dry earth is a tardy conductor of electricity. But earthquakes generally happen on the banks of rivers, or banks of the fea; and accordingly the water does not receive a vibratory fhock of the fame kind that the land does, though the commotion is here alfo violent and irregular, but receiving the electric matter from the atmofphere at once (as being a good conductor.) : the effect on fhips, or bodies in the water, is as if fomething hard ftruck the fhip or the body in the water. For if the hand be immerfed in a glafs-bowlful of water, when a ftrong fhock from an electrical battery is fent through the water, the hand will receive a blow very unlike an electric fhock, but very like what I have been told the flhips in the Tagus felt in the great earthquake of Lifbon.

An humble imitation of thofe effects may be produced by the two circular boards, fig. 11, Plate XXX. about two feet in diameter, their edges rounded, and the whole covered with tin-foil. Let one be fufpended from the ceiling by clean filken cords; and the other fuftained on glafs feet, parallel to the other; but fo as to be brought nearer or farther from one another. If the upper board be connected with the conductor, and the lower with the earth, and feparated about two inches diftant, and electrified; one hand touching the lower, and the other the upper, a fhock will be received as from the Leyden bottle: for, as has been Thewn, it is but a plate of air that is charged inftead of a plate of glafs; the upper board being in a pofitive, and the under in a negative, fate: the flock being in proportion to the quantity of electricity, and the eafe with which it can efcape from the pofitive fide of the electric. The two plates ftrongly attract each other, and would come together, if not kept afunder by force: fparks flying between them will frequently deftroy the electricity of each. If the under furface of the upper plate be covered with gilt leather, and a fmooth fhilling be laid on the lower plate; beautiful ramifications will fly about the leather, and dart to the fhilling, when electrified. In this experiment the upper plate naturally reprefents a pofitive cloud, and the under one the earth, with the manner in which lightning darts from the clouds to the earth; and if a Leyden vial be connected with the conductor, as z, the flafh and report will be fill greater.
2. A whirlwind, or waterfpout, may be naturaily exhibited by laying a fpoonful of bran on the under plate, and taking off its chain. When the upper plate is electrified, and the hand now and then touches the lower, the bran will affemble in one place, and
yox. II.
form a kind of column between the two plates, and whirl round, then fhift to different parts of the plate, and after fome time fly off and difperfe about the room.

Thefe appearances are fo exactly fimilar to thunder, lightning, tornados, waterfpouts, \&c. that, on the hypothefis of electricity emanating from the fun; being received and conducted by the thin air of the upper part of our atmofphere, to the clouds; and ftopt there, by the non-conducting denfe air below, from uniting with the earth, to which it has the ftrongeft affinity; may we not believe that its efforts to pervade, or get through, the refifing air of the lower atmofphere, produces the above effects?

SECTION III.

Of Animal Electricity.

THAT the animal nerve is a vehicle for electricity, and perhaps the caufe of fenfation, many experiments make more than probable. In the torpedo, we find an electrical battery, abftracted from the veffels appropriated to the animal functions; it confifts of a great number of veffels like an honey-comb, ftanding acrofs the fifh, from its belly, to its back; fo that if one hand touches the belly, and the other the back, an electric fhock is inftantly felt, and the fifh is convulfed. If the fifh be touched with a flick, a numbnefs feizes the hand that holds the ftick. The fame effect takes place, if a charged battery be touched with a flick, becaufe the ftick is a
bad conductor, and the electric matter can only pafs through it in a ftream, benumbing the hand in its paffage ; but a regular conducting power from its pofitive and negative fides, would be a fhock. The electric eel, or gymnotus, has a ftronger electrical power than the torpedo: the head and fhoulders of this fifh contain the animal functions; the reft feems all electrical; and electrical by volition, for the creature has the power of exerting or withholding the fhock. If one hand be put in the water, and the other touch the eel, a violent fhock takes place. I have electrified thirty people at once with this eel ; and fparks have been produced by that electrical circuit. How thefe two fpecies of fifh collect and retain their electricity, in a conducting medium, is an inexplicable wonder; they were no doubt endowed with this power for defence, and catching their prey ; and have organs to fecrete it from the water as other animals fecrete nutrition from the heterogeneous contents of the ftomach. The nerves feem not defigned to admit, or tranfmit, any animal fluid ; they are kept moift by an indolent lymph ; and are tranfparent acrofs and lengthwife, as if intended to give a direct paffage to light. If electricity and light be the fame (but differing in circumfances), may not this tranfparency be firongly indicative of their capacity to tranfmit electricity? But this conducting power is proved by the late experiments made on frogs, and other cold animals. This barbsous experiment requires the frog to be divided in the middle by a pair of fciffars, and the fkin taken off. The vifcera of the hinder part is cut away, fo that the vertebre may be laid bare : the two nerves will then be plainly feen, that give articulation to the hind legs, which being raifed with a needle, a portion of the vertebre may be cut away, fo that the other part of it may be united to the hind legs by the above two nerves; fee fig. 5 , Plate XXXI.;-if round the remaining vetebre a little tin-foil be wrapped,
as a, and the legs be laid on a piece of zinc or on half-a-crown, as c; if by a crooked filver wire, d, the tin-foil and zinc be touched at once, the legs of the frog ftart up, and are ftrongly convulfed. 2d, If the two legs be put in a wine-glafs, full of water, and the piece of vertebre wrapt in tin-foil in another adjoining one; fee fig. 7 , Plate XXXI. ; and if then the bent filver wire d touch the water in each glafs, the legs of the frog inftantly jump out of the water! Are not thefe frrong indications that the influence of the brain and nerves upon the mufcles is of an electric nature? 4th, The nerve of the limb of an animal (recently killed) being laid bare, and its end armed with tin-foil as above; if a communication be made between the tin-foil and any neighbouring mufcle by the filver wire or one of zinc, ftrong convulfions will be produced in the limb. $5^{\text {th }}$, Or if the metallic communication be made between the armed and bare part of the nerve, the contractions will alfo take place. 6 th, A fimilar effect is produced, by touching the armed part with different metal. $7^{\text {th }}$, The amputated limb of an animal being placed on a table, and its principal nerve laid bare, and held by one hand, while the other touches half-a-crown, with a piece of zinc (the halfcrown lying in the water that communicates with the limb), the limb inftantly becomes convulfed. 8th, Animals almoft dead become confiderably revived by exciting this influence. And if a live flounder be laid on its back, on a plate of copper, and an halfcrown be placed on its belly; on making a metallic communication between the two metals, the flounder leaps up. gth, In animals killed by opium, or corrofive fublimate, or flarved to death, or killed by an electric fhock, little or no contractions are produced; for a little laudanum laid on the nerves of the above frog's hind legs, made them inftantly infenfible, and all mufcular motion ceafed. Zinc appears to be the beft exciter when applied to gola, 'filver,
molebdena, fteel, or copper ; but it muft be obferved, that two different kinds of metal muft be ufed in making the circuit, fuch as zinic and gold, filver and tin, tin and lead, \&c. 10th, If a medal of zinc be introduced under the tongue, and a crown-piece be laid on the tongue, and the edges of the two pieces be made to touch, the nerves of the palate are affected by a ftrong phofphoric tafte. 11 th, If the piece of zinc be introduced between the teeth and upper lip, near the eye-tooth; and the crown-piece be pufhed far under the tongue ; and then the edges of the two pieces be made to touch, a flafh of lightning is feen by the eyes, even though the perfon be in the dark or hoodwinked. 12th, If a perfon ftand on the electric ftool with glafs feet, and touch the prime conductor for a few minutes, while the machine is working, his pulfe will be greatly accelerated ; and if bled in that fituation, the blood will be projected from the vein to a confiderable diftance: fhewing that electricity ftimulates the motion of the heart, and increafes this motion of fluids, \&c. \&c. Can any doubt remain that this wonderful agent is a prime inftrument in mufcular motion ?

That different kinds of metals are neceffary in producing thefe effects, may arife from the different quantities of fpecific electricity contained in them ; gold contains more than filver; zinc more than tin, \&c.; fo that when thefe different metals are put together, or come in contact, an infenfible equilibrium may take place among them; or when they feparate, as a of zinc, and b of tin, fig. 8 , Plate XXXI. if a communication be made between them with a wire of gold or filver, as d (for it is found that the purer the metal, the better is its conducting power), an equality takes place. If a medal of zinc, therefore, be worn in the pocket with filver, and inftantly ufed from that fituation, they will not produce on the eye
the fenfation of a flafh of lightning, as above. If one of thefe metals be, therefore, confidered as plus, and the other minus, may not the equilibrium made between them by the wire d, fig. 5 , Plate XXXI. put the electricity of the nerves, \mathfrak{z}, into motion, and by that means ftimulate the expiring mufcles to action?

That different metals contain different quantities of inherent or fipecific elećtricity, feems evident from this experiment. Take 3° or 40 medals of zink, and as many half-crowns, as A B D, fig. 6, Plate XXXI.; lay firft a medal of zinc on the table ; lay upon it half-a-crown, and on this a round piece of pafteboard moiftened in falt and water, or in a folution of fal-ammoniac ; repeat this arrangement till the medals form a pillar with half-a-crown at the top. If a filver wire touching the loweft medal be held in the left hand, and another in the right touch the topmoft medal, a fhock like electricity is felt; and if the pile have a wire communicating with the topmoft medal, as A, that extends into the glafs veffel of water B , and comes near the end of a wire D (communicating with the loweft medal), bubbles of air will be ejected from the ends of the two wires, one being oxygen gas, and the other hydrogen. Or if plates of filver be foldered to plates of zinc, and thefe united plates be fixed at half an inch diftance, edge-wife, in a trough, fo that diluted nitrous acid can be retained between them without leakage; a circuit of feveral people, taking hands, and communicating with the two ends of this pile, will receive the electric fhock, the fame as from the Leyden vial. It feems as if oxydating one metal, and unoxydating the other, excited their latent electricity into ation.

Electroplorus.-This apparatus exhibits a continual electricity. It generally confifts of a cake, made of a promifcuous mixture of
melted wax, refin, fulphur, pitch, \&c. made or turned even and fmooth at the top. A plate of metal, or wood, covered with tinfoil, has a folid glafs rod fixed perpendicularly in its centre, by which it can be lifted. If the wax cake be warmed, and rubbed with dry cats'-fkin, or flannel, electricity will be extracted by it from the rubber and the hand, and an atmofphere may be felt on the furface of the cake. After excitation, if the metallic plate be placed upon the cake by its glafs handle, and touched by a finger, when lifted from the cake, the metallic plate will draw a fpark from the finger. This may be repeated for an hour together, and fill the plate will draw a fpark from the finger. Why?-Electricity is repellent of itfelf: the quantity induced on the cake by friction, repels a quantity from the metallic plate through the touching finger; but in the act of this repellency the plate is lifted from the cake by the glafs handle, and of courfe left in a negative ftate (as the electric ftrean is by this means broken): a finger, therefore, approaching the plate, gives it an opportunity of reftoring its lofs by a draught from the finger. As the cake has only exerted the influence of its electricity, and little of the electricity itfelf is loft or expended, this operation and effect may be repeated for a great number of times; and with a machine, containing inflammable air, candles may be lighted in the night by the electrophorus, as it will retain its electricity for many hours in a dry room. A repetition of placing the plate on the cake may alfo be confidered as a continued friction and excitation; for the bare removal of cakes of chocolate from their pans, or fulphur from the moulds into which it has been poured, will excite electricity *.

* To Mr. A. Walker, from Mr. Read, on the Electroplocrus.

"Place the electrophorus cake of wax, well warmed, on the table, then rub the furface on the palm of the hand, or with a woollen cloth, and the cake will be electrified

Medical Electricity.-"Fire is the firft mover in the animal machine, and the chief active principle during its exiftence; and as electricity exhibits fo many phænomena which cannot be diftinguifh-
negatively ; which may be proved by prefenting the excited furface to a pair of pith-balls. Hence I confider the negative electricity of the cake to be inceffint in its endeavour to obtain the pofitive electricity; and that nothing elfe can poffibly refore an equilibrium to all its parts. But the condition or texture of the cake does abfolutely prevent it from rcceiving at once all the elcetricity it wants; yet the mode of repeating the experiments with the cake are all favourable to, and do, in a very flow manner, promote its electrical equilibrium.
" Let us now proceed with the experiment, and place the brafs plate cover, by means of its glafs handle, upon the cake, and we fhall find if the glafs handle infulate the brafs plate perfectly, that the plate, as well as the cake, will be electrified negatively; of courfe, they have no elearricity to give, but very eager to receive the pofitive electricity from any thing.
"I now approach the brafs plate with my finger, and as foon as it comes within the fphere of the negative attraction of the cake and plate, the finger, though uninfulated, will acquire thereby the pofitive electricity, and a fpark will iffue from it into the brafs plate ; the quantity, I will fuppofe, is equal to both their wants: but it cannot at once, as before faid, diffufe itfelf into the cake, owing to its natural incapacity to receive it; and alfo fomewhat becaufe the brafs plate touches the cake but in a very few points.
"After the brafs plate has been touched with the finger lying on the cake, it acquires the pofitive fate of electricity, which may be proved in the ufual way; and when it is removed from the cake by its glafs handle, it ftill retains, I will fuppofe, ninety parts out of one hundred, of the pofitive electricity given to it by the touch of the finger; and which the finger will receive back again, on its approach to the edge of the brafs plate.
" In this manner, a great many fparks of electricity may be given to and taken from the brafs plate, by the uninfulated finger only. For not a particle of electricity ever comes into the brafs plate from the cake. The cake and the brafs plate being in the contrary fates of clectricity, they confequently mutually attract each other, and their whole tendency is to unite their powers.
" To illuftrate one of thefe facts, I would infulate a large metallic conductor, and touch it with a negatively-charged bottle. This done, it is evident that the conductor muft be in the fame electrical ftate with that of the excited cake of wax. But they differ confiderably in their compofition. Therefore it is, when I approach the con-
ed from thofe of fire, we are naturally led to conceive high ideas of the importance of this fluid to medicine." The agency of electricity in animated nature, has been proved by the experiments made on the torpedo and electrical eel. The number and magnitude of the nerves, in thefe animals, bear no proportion to their fize; nor do they feem neceffary for their motion, fubfiftence, or generation: it therefore feems to follow, that they are intended for the formation, collection, and management of the electric fluid; and no doubt to procure fubfiftence, and protect the animal from its enemies; particularly as the will of thefe animals commands thefe powers. Variety of facts clearly prove the electric fluid to be effentially connected with the human frame; it will dart from long hair when combed in frofty weather; it will inflate a filk ftocking when drawn from the leg. In damp and hazy weather, when electricity is carried off from bodies by humidity, our fpirits become languid and our fenfibility lefs acute; the nerves lofe their tenfion and elafticity: and on high mountains fpontaneous flafhes have darted from the fingers, the body containing more than the furrounding rarefied and conducting air: an electric fhock has given tone to a flaccid fibre; has rendered palfied limbs plump: the electric aura from a wooden point has difperfed an infant cataract in the eye ; and when iffuing from a metallic point, has reftored the languid circulation of a local part to the condition of the reft of the body. Infulated, and comected with the conductor, the pulfation
ductor with my finger, and a fpark iffues out of it into the conductor, that this one touch aione reftores the equilibrium to cvery part.
" Laftly, Philofophers, in their explanations of the facts and appearances obferved in the action of an electophorus, have, without reafon, I think, cmbarranfed their account with the doctrine of repulfion. However, I perceive no repulfive power at all. The attraction of the negative furface of the cake is, therefore, alone active in this cafe."
"JOHN READ."
is increafed : by this mode, both male and female obftructions have been removed. Sparks adminiftered to chilblains, have, in affifting the circulation of the blood, generally effected a cure. Even the laft effort of expiring life is called into action by electricity, when every other ftimulant has failed. Can we doubt, then, that this vital fuid is mucb conneeted with mufcular motion?

If a battery be difcharged through a moufe from the head to the tail, it will kill the animal: but after death, if an equal charge be fent the fame way, it will pafs vifibly over the body of the moufe, and not through it : proving that the power or medium which tranfimitted the fhock was loft with its life.

For the application of electricity, it is neceffary to have a Leyden jar, like fig. 20, Plate XXXII. where the knob b is infulated from a, by the glafs fupport c; and the brafs rod $b d$ will flide eafily through the metallic focket e, fo as to make the fhocks greater or lefs. A pretty large forceps, A, fhould accompany this jar, turning on the joint g; and having its legs $n n$ of folid glafs rods. This forceps applies to any part of the body; thus: Suppofe fhocks are wanted to quicken a languor of circulation in the upper part of the arm; place the knob r on the fhoulder, and the knob s near the elbow, and flide the knob b within a quarter of an inch of the knob a, having the wires or chains, y and z, as in the figure; if now the chain u be connected with the conductor, and the machine be excited, the fire will jump from a to b, and the part will receive a fhock in proportion to the diftance of a and b.

But a better effect is produced by letting the charge pafs in a fream through the part. Draw b from a as far as the focket c
will admit; and difengage the wire z from the knob s; this knob when unfcrewed from the forceps, fhould difcover a point at s. If now the knob r be placed on the fhoulder, and the point s be brought near a, the fluid, condenfed in the jar, will flow through the arm in a denfe flow ftream, and produce a confiderable degree of warmth.

EXPERIMENTS,

MISCELLANEOUS AND ENTERTAINING;

ILIUSTRATIVE OF THE AFORESAID DOCTRINE:

BEFORE we proceed to the experiments, it will be neceffary to reconfider the electrical machine.

1ft. To Jberw the course of the electric fluid.

Fix into the remote end of the pofitive conductor c, a wire about fix inches long, with a fmall ball at its extremity : excite the machine, and hold the flame of a wax taper near the ball, and the flame will be pufhed horizontally from the ball, in the direction of the electric fluid. Remove the wire and ball into the end of the negative conductor, and the flame will be pufhed towards the ball: fhewing that the exciting rubber draws the electric fluid from the earth, and air; and that it iffues from the pofitive conductor.

2d. To make electric attraction and repulfion ocular.
Fix a pointed wire perpendicularly in the pofitive conductor, and let another pointed wire, from the negative conductor, approach it within an inch, and directly over it. When the machine is worked, both points will be luminous ; the pofitive, or delivering point, with a brufh; and the negative, or receiving point, with a ftar. If now an excited tube of glafs be brought near the pofitive point, its brufh will be repelled fidewife (for they are both pofitive); and if the excited tube be held juft oppofite to the point, the brufh will inftantly vanifh : but the excited tube being held near the negative, or receiving point, its far will turn towards the tube, and be vifibly attracted. As excited fealing-wax abforbs electricity from its rubber, or other bodies with which it comes in contact, if it be held near the brufh it attracts it, if near the ftar, it repels it, contrary to the effects of the excited glafs.

3d. The electrical Spider.

Cut a fmall piece of pith, or cork, into the fhape of a fpider; run a threaded needle lengthwife through it feveral times, cutting the threads, fo they may hang from each end of the cork; fee fig. 12, Plate XXXI.; let the fider be hung from the ceiling by a dry filken thread, and the charged vial placed with its knob near it; the fider will then be attracted to it, and becoming poffeffed of pofitive electricity as well as the vial, will be repelled to the $\mathrm{knob} d$, where it will deliver its electricity, and of courfe be attracted to the knob b again. Thus will it continue to carry the pofitive quantity piece-meal from the in, to the out-fide, till an equilibrium is reftored between the two fides.
$4^{\text {th. If }}$ a wire with an hollow light ball at each end be fufpended on a point fupported by the glafs rod n, fig. 12, Plate XXXI. and a metallic rod, s, ftand near it, on the fame fide with the charged jar ; the knob c will be attracted to the knob b, and receive a fmall portion of its electricity, and therefore be repelled; but that repellency will drive the knob g to the rod n, where it will deliver its electricity, which will find its way to the negative fide of the jar along the wire z. Thus will the fufpended wire vibrate between the jar and the rod s for feveral minutes, till the jar is exhaufted.

5th. Pofitive and negative fides of Leydenjars, proved by the double jar.

Let m, fig. 11, Plate XXXI. be a fimall jar ftanding on a round plate fixed into the knob of the large jar n. Let the outfide coating of the finall jar, m, touch the prime conductor fo long, as to charge the large jar n; then draw both from the machine. The lower jar is now charged : but the upper one is not charged ; becaufe, though its outfide coating communicates with the pofitive fide of the under jar, it cannot be charged itfelf, fince the knob of its. infide furface communicates only with the non-conducting air (for a jar cannot be charged pofitively, on either in or out-fide, except its oppofite fide communicates with the earth directly or indirectly). If now the crooked wire s touch the negative fide of the lower jar n, and its other end touch the nob x, a portion of the natural quantity of the fmall jar will be forced out, by the pofitive quantity on. its outfide, with a flafh, and report. The upper jar now becomes. charged; for its infide is negative, from what it has parted with; and its outfide pofitive, from communicating with the pofitive fide of the lower jar. If then the bent wire u touch the knob x, and its
other end the outfide coating of m, a flafh will take place at z. Now what was taken out of m, is reftored from the lower jar, and m may be faid to be again in its natural ffate. But if the wire s again touch the jar n, and its other end the knob x, the quantity taken out of n, and put into m, will exhibit a flafh at x, in its way to the negative fide of m. A little more may be taken out of n by touching the knob x, and then the outfide of m, as before; and this again reftored to the outfide of n by the wire s. By repeating thefe, more than twenty flafhes may be produced while the electric matter is thus flowly exhaufting from the lower jar n.

6th. By a fmall pyramid, to prove the danger of breaks, or interruptions, in thunder rods.

Let a wooden pyramid, fig. 10, Plate XXXI. be made in feveral pieces, with a wire through each, fo that their ends may touch, as $s s s$. Let one corner of the pedeftal d be loofe, and have the fafetywire pafs almoft through it, but not quite. The wire paffing through the reft of the pedeffal, muft join (by a chain) the outfide coating of a Leyden vial. If the cloud x be fupported by a wire from the prime conductor, and hang half an inch from the knob g. of the pyramid; when the vial is charged, a flath will take place between x and g; the lightning will pafs along the wires $s s s$, till it comes to the break at d; there an explofion will take place, that will drive out the corner fone d, and let down the fabric.

7th. An electrical explofion difplaces the air.
Shape an half-inch board like the gable end of a houfe, as fig. ${ }_{13}$, Plate XXXI.; fix it perpendicularly on the board d; cut the
fquare hole a through it, and clofe up the back part of it with a fquare piece of window-glafs. Cut a piece of board, that will loofely fit the fquare hole, and fix a wire diagonally into one fide of it, as $c n$. A wire, $x n$, terminated by the knob x, alfo is fixed fuperficially into the gable, as well as the wire $c z$. If now the knob x be placed within an inch of the prime conductor k, joining the vial v; and the outfide coating join the wires by the chain q; as the jar is charging, a flafh will take place between the prime conductor k and the knob x, but no mifchief will be done; for there is a regular road for the fluid along $x n c \approx q v$ to the negative fide of the vial. But let the fquare piece of wood be taken out, and its wire placed againft the glafs on the back of the hole, and in the direction a s, inftead of the direction $c n$; when the ftroke takes place from the prime conductor, the fquare piece of wood will be thrown out to a confiderable diftance by the explofion behind, as may be feen through the glafs: and, that the fwelling of the air was the caufe, may be felt by fixing the fquare piece o in the hole ; this piece has a fmall tube fixed in it, fo that when the explofion takes place, the hand held before the tube will feel a blaft of air ftrike it.

8th. A further illuftration of the theory of the Leyden bottle.
Infulate the bottle, as fig. 14, Plate XXXI. Hang three bells and two clappers to a wire a, communicating with the interior coating ; and three others to be faftened to the exterior coating: hook the chain q to the wire a, fo as not to touch the table, and charge the jar as ufual from the fame wire: while it is charging, the bells hanging from b will ring. When the bottle is charged, remove it from the machine, and unhook the chain q, and let it lie on the dry table. Now touch the wire b, and its bells will ceafe, and the bells
from a will begin to ring ; then fhift your finger to the wire a, and the bells from b will act, and fo on, alternately, till the bottle is exhaufted. In the firft cafe, the bells from b rung by electricity, propelled from the outfide coating, making its way through the chains of the outfice bells, by the clappers, to the middle bell; from whence the ohain d conveyed it to the furrounding bodies. The apparatus now removed from the machine, and the chain q from the wire a; on b being touched, the propelled electricity returns in part to the outfide, and repels a proportionate quantity from the infide, which rings the bells on a in its paffage. When the knob a is touched, more of the pofitive quantity efcapes, and more returns to the outfide, ringing the bells in its return, and fo on, alternately, till the bottle is difcharged.
N. B. If the filk thread s be very clean and dry, there will be no occafion for hanging the chain q on a, the jar will charge without it; for it would be found rather difficult to take the chain q from a, without difcharging the jar and receiving a fhock.

9th. The effort of pofitive and negative quantities to meet each other may be feen in an overcharged bottle.

Hold the knob of a Leyden bottle, a, fig. 1, Plate XXXII. to the prime conductor, while the bottle is charging, in the dark: when it is nearly charged, little flafhes and corrufcations will appear at c, and all round the edge of the outfide coating: brufhes will alfo iffue from the cork of the bottle at d, and ftrive to meet the flathes at c; if the excitation is continued, they will meet, and a fpontaneous difcharge will take place. But if the uncoated part of the bottle be breathed upon, and then heid to the conductor as
before, the negative quantity from c will folicit the pofitive from the cork; and the pofitive will incline with equal affection from the cork to meet the negative, and their union may be feen at n; while the fuper-quantity will fly off in a brufh at m. If the bottle, fig. 2 , Plate XXXII. (held by its knob), be preffed againft the prime conductor, while it is charging, negative corrufcations will bend from the cork to meet the pofitive ftream iffuing from the outfide coating, and they will vifibly meet without report, at n; the quantity running over, iffuing out at m.

10th. From what arifes the beautiful corrufcations among the links of a cbain, when the Leyden bottle is difcharged tbrough them?

The explofions that take place at the links of a chain are occafioned by the electrical repulfion of each other, for they, in reality, do not touch. When, therefore, a chain is tightly ftretched, an electric fhock will pafs through it, as through a wire, without any lateral explofions.

11th. Has electricity any weight?

Yes.-Sufpend a fmall thin glafs balance on a fine point, a, fig. 44; balance the hollow knob c with the weight d, and let c juft touch the prime conductor w; which being electrified, the end c will be found to preponderate: in this cafe, the convex parts of the knob and conductor muft be exactly oppofite, that the momentum of the aura may be equal on all fides.

[^17]tricity; as air; glafs, filk, \&cc. But electricity is capable of making many opaque bodies tranfparent by impregnating them with temporary light. If the ends of two chains, in an electric circuit, be placed at a quarter of an inch from each other, and a finger be laid at the interruption fo as to touch each; when an electric fhock is fent through the wires in the dark, the finger will be feen perfectly tranfparent. A piece of ivory laid on the interruption will alfo become tranfparent, \&cc.

1gth. If firong fhocks be fent through a glafs tube filled with vitriolic acid, fulphur will appear on its furface. Is not this favourable to the old doctrine, that fulphur is but a combination of that acid with phlogifton (or what I call fire)? For we procure the acid by burning brimftone ; thereby difengaging the acid, which forms an union with water placed in leaden veffels for its reception. What effect, then, does the electricity produce when fent through this acid, but reftore the fire, or phlogifton, which the fulphur loft in burning ?
14.th. Electricity adds bulk and inflammability to air.

Fill a bent tube, fig. 4, Plate XXXII. from a to b, with heavy inflammable air, and the reft with quickfilver, inverting one end of the tube in a bafin of quickfilver, and corking up the other, with a wire c, through it. If ftrong electrical fhocks are paffed through the tube, the air will increafe in bulk, and becomes fo carolified as to burn as clear as vital air. 94.5 meafures of this gas, mixed with 107.5 of oxygen gas, being fired in a clofe veffel, were reduced to 128.5 neafures. Was not this from the efcape of its fire, or electricity?

15th. A fleecy feather, furpended by a fine filken thread, and addreffed to an electrified tube of glafs, or ftick of fealing-wax, will be attracted by the excited tube or wax, and inftantly repelled : but in that repellency, if the tube be moved round the feather, the feather will move round the tube, and always keep the fame face to the tube, juft as the moon keeps the fame face towards the earth. I do by no means, however, contend here for the caufe being the tame.

16th. A black-lead line, on paper, is a conductor: if that line be made into an electrical circuit, after being covered with powdered rofin, it will produce an amazing illumination.

17th. Electric fparks will not take place but in mediums that are bad conductors. All airs are bad conductors, except the inflammable; in this air no fparks can be taken. Does not this favour the hypothefis, that metals, water, and other bodies containing fire, that are conductors, and holding their inherent or fpecific electricity but loofely, derive their conducting quality from that property?

18th. Electricity gives volatility to zuater, and is, perbaps, the principal agent in the rife of vapour.

On Bennet's electrometer, fig. 5, Plate XXX II. place a fmall metallic cup d, with a few drops of water in it : if a live coal be dropt into it, the flips of leaf-gold will part with negative electricity ; and fhew that electricity was carried off from the cup and cap of the electrometer a, by the rifing vapour; and that the flips weint to the pieces of tin-foil, $c c$, to recruit their lofs.

19th. The electricity of fogs and rain is well illuftrated by two of the above electrometers, fig. 6, Plate XXXII. The cap of the electrometer A, has a bent wire, m, fcrewed into it, having at its other end a piece of tin, s, foldered to it : another electrometer, B , has the metal cup d placed upon it (as in the laft experiment), and directly beneath the tin s. If water from the $\operatorname{jug} g$ be poured on hot coals in the cullender c, the water that falls into the cup d will produce negative electricity in the electrometer B; and the vapour that rifes againft s, will induce a pofitive effect in the electrometer A. Is not electricity thus carried into a latent fate like fire, or heat? Is it not evident that the fteam had acquired what the water had lof? and that this is another inftance that fire and electricity produce the fame effects, and, confequently, that they are but modifications of one and the fame principle?

20th. This fact may be further diverfified by fixing a tobaccopipe to the cap of an electrometer, as a, fig 7 , Plate XXXII. If the fmall end of this pipe be heated red, and fixed as in the figure : if water be poured into it, it will rife in feam againft s (as in the laft experiment), and produce pofitive electricity in A, and negative in B.

21 ft . A fmall bucket of water, with a capillary fyphon in it, hung to the conductor, will difcharge the water in drops: but when electrified, the water will diverge, flow fwifter, fly about in fimall drops, and be luminous. Or fufpend one bucket from the pofitive conductor, and another from the negative, with their fyphons wivithin three inches of each other; when electrified, the ftream iffuing from one will be attracted by the other, and form one fream, which will be luminous in the dark. If the two buckets are fufpended on two pofitive, or two negative conductors, the ftreams
will repel each other. Or if water be poured into a bafin, placed on the prime conductor, the ftream will divide into a great number of lucid drops.

A fponge, filled with water, and hung to the conductor, when electrified in the dark, will exhibit fiery rain.

The knob of a charged bottle will attract a drop of water from a bafin; which drop, on the removal of the bottle, will affume a conical fhape, and if brought near any conducting fubftance, will fly to it in luminous ftreams.

Thefe experiments prove that water is feparated and diffipated into vapour by electricity, and that with uncommon rapidity.

22d. Sparks taken from electrified water, carry off a portion of that water along with them. Place a drop of water on the prime conductor, and it will deliver a very long fpark, affume a conical figure (like a water-fpout), and wet the body that receives the fpark.

23d. Heat one end of a thick wire, fo that it will make its way into a ftick of fealing-wax ; the wax may then be made to project horizontally from the prime conductor, fo as to be eafily fet on fire by a taper ; if electrified whilft it is blazing, filaments, like fine threads, will dart from it the length of a yard or more, and cover a fheet of paper, held before it, with innumerable fibres like a cobweb. This is but the rife of vapour in another, but a more tenacious fluid; where, by the heat of the flame, and the repulfion of electricity, the parts are thrown out into long threads.
24.th. If two bottles, a and b, fig. 9, Plate XXXII. having fimall tubes fixed in their corks, with each a fop-cock, be half filled with water, and the cocks be open, the mouth applied to the tubes may eafily, by blowing, fo condenfe the air within, that by its preffure on the water, fountains will take place. If thefe bottles, fo charged, and the cocks fhut, be one placed obliquely on the pofitive and the other on the negative conductor, and whilft electrifying, the cocks be opened, the fountains will lean towards each other, coalefce, and fall down in large drops, as in the figure.

Thefe experiments ftrongly indicate, how pofitive and negative clouds attract, unite, and mix their waters together, fo as to produce drops.

25th. How can the motion of the earth be reprefented by electricity?
Fix the wire hoop, fig. 10, Plate XXXII. a a, into the prime conductor d, and place a brafs plate, $c c$, on a ftand half an inch below the hoop ; then lay a thin hollow glafs globe, about three fourths of an inch diameter, on the plate, and electrify the conductor ; the ball will inftantly begin to turri on its axis, and roll round the hoop.

> 26th. May not electricity be the caufe of tranתparency?

Let one end of a chain be connected with the outfide of a charged jar, and its other end lie on the table: place the end of another chain about half an inch from it, and place a decanter of water on thefe feparated ends. If now the jar be difcharged through thefe chains, in the dark, the water will appear beautifully luminous.

Does not this feem as if light lay latent in the glafs and water ; and was excited into vifibility by the explofion made under the decanter? Or lay the end of a finger between the two ends of the wires, and the fhock will render the finger tranfparent. So it will an ivory ball, \&c.

27th. How to reprefent words, trees, landfapes, ©cc. by electricity.
Let a glafs tube of about eighteen inches long, and three fourths of an inch diameter, have fimall round pieces of tin-foil pafted upon it, at a fmall and equal diftance from each other, in a ferew-like form, as fig. 11, Plate XXXII. ; and let this tube be enclofed in another, to protect the tin-foil: on the ends of this tube there muft be cemented brafs caps like knobs. When either of thefe knobs are held within an inch of an electrified conductor, fparks will dart to it, and through the pieces of tin.-foil, making an appearance like a fipiral ftring of diamonds, the whole length of the tube.

2d. Short words may alfo be made luminous, by covering a piece of window-glafs with ftrong copal varnifh, and while wet laying on flips of tin-foil parallel to each other, at about two tenths of an inch difance, each about the twelfth of an inch wide. When the varnifh is dry, the flips may be cut in the fhape of letters with the point of a fharp pen-knife, fee fig. 12, Plate XXXYI. The round piece a muft be held near the knob of the conductor, where the fluid will enter and run to c, where a crofs-piece of tin-foil muft conduct it to 0 ; from thence it will run back along the line $0 g$, and fo zig-zag to the thumb, which holds the glafs at w. At every cut made with the knife, a fpark will take place, and all at the fame inftant; fo that in the dark the word will read in diamond-like letters.

3d. Flowers, trees, landfcapes, \&c. may be drawn in the fame way, fee fig. 13, Plai. XXXII.; and their beauty and brilliancy exceed all defcription.

28th. How to increafe the circulation of the blood, and the pulfation of the heart.

Let the perfon ftand on a ftool with glafs feet, and take hold of the conductor, or a chain comnected with it ; he will then himfelf become a part of the conductor; and when the machine is put in motion, he will feel his hair fpread out, and ftand erect: his pulfe will be accelerated; and if he fhould be bled in that fituation, the blood would be propelled to an unufual diftance; diverge into fmall drops, and each drop be feen luminous in the dark. In this fituation he will attract light bodies; give fparks to his neighbours wherever they touch him ; charge Leyden jars; and fire warmed fpirit of wine with his knuckle. To make thefe entertaining experiments fucceed well, the infulated perfon fhould be careful that no part of his clothes touch the floor, table, or fpectators; and if the ftool ftand on a fheet of brown paper, the infulation will be fill more complete.

2gth. Electricity ignites combuftible bodies, like common fire, or ligbtning.

Wrap cotton wool round one of the knobs of the difcharging rod, and fill the wool as full of fmall bruifed rofin as it will hold. Difcharge a jar with the rod as ufual (only obferve that the covered knob touch the knob of the jar) ; and the rofin will be inftantly in a blaze. See fig. 19, Plate XXXII.

2d. The inflammable-air piftol affords a better inftance, how liable all inflammable bodies are to become ignited by electricity. This piftol is fometimes of brafs, and fometimes of ftrong glafs, as a, fig. 14, Plate XXXII.; c is a brafs cap and cork, in which is inferted a glafs tube, $s s$, through which paffes a wire, with the knob n on one end, and the other, turning at g, comes within the tenth of an inch of the brafs cork; fo that when the knob n takes a fpark from the conductor, the fpark is repeated at g, which fires the inflammable air in the body of the piftol, and drives out the cork u, with a ftrong flame, and a loud report. This piftol is charged, by being placed as fig. 15 , Plate XXXII. on a bottle containing bits of iron, nails, or filings, on which if vitriolic acid be poured, diluted with eight times its quantity of water, the inflammable gas will be extricated; from its fpecific lightnefs it will rife into the piftol, and mix with the common air in it. After a minute, the cork u, may be put tight into it, and it is then fit to be difcharged.

If, inftead of common air, vital air be mixed with the inflammable air, the flame and report will be vaffly increafed.

A drop of ftrong æether, corked up in the piftol an hour, will as effectually charge the piftol as the above airs.

To imitate the blowing-up of a magazine of powder by lightning, have the fmall model of a houfe, as fig. 17, Plate XXXII. the fides and roof faftened to each other by hinges. Through the board that forms the floor, have a hole for the wires s and u to pafs through ; and alfo a cork m, glued on the floor, for the fame wires to pafs through, fo that their ends may nearly meet at x, above the cork. On this cork muft be preffed the bottle B, charged as vol. if.
before with inflammable air. If then the chain y be attached to the outfide of a charged jar, and the chain w touch its knob, the charge will pafs through the wires s and u, make an explofion at x, fet fire to the air, which will blow up the bottle, and with it the roof of the houfe.

30th. That electricity vibrates like other fluids, fometimes leaving the body pofeded of it in a pofitive, and Sometimes in a negative fate.

If a coated pane of glafs be fixed perpendicularly on a board, by the part uncoated (for two inches round its edge is always left uncoated on both fides); if one fide be then fuddenly touched by the knob of an exhaufted bottle (i. e. charged negatively), both fides of the pane will be found in a fate of want, or negatively electrified. By the exhaufted bottle touching the coating of the pane, it fteals from that fide of the pane a portion of its natural electricity ; the other fide vibrates towards it, to reftore the lofs, and both fides become, of courfe, negative.

31 ff . Let two fmall pith balls hang from the outfide coating of a Leyden bottle, and its knob be flightly touched by the pofitive knob of a charged bottle; the balls will part with negative electricity : but if their bottle be placed on an infulated ftand, and its knob again touched by the pofitive knob of a well-charged bottle, the balls will part with pofitive electricity. Why ?-Glafs being confidered as pervious to the influence of electricity (as above), the pofitive quantity induced on the inner coating of the infulated bottle will propel from the outfide a proportional quantity, and would make that fide negative as above, if the matter could get away; but being imprifoned by infulation, the influence vibrating from the in to
the out-fide of the glafs, and there ftopt, both fides remain alike pofitive.

A bottle charged at the negative conductor, and treated fo, would have its two fides negative.

32d. Place a charged bottle on an infulating fand; bring the knob of a bottle well charged negatively, near it; and a thread will play between the two knobs: but, when the knobs touch on the ftand, the thread will be firft attracted, and then repelled, by both: for as want was more predominant than abundance, in the two bottles, when an equilibrium was made by their contact, they become both negative. But if a finger touch the knob of the bottle charged negatively, it inftantly becomes pofitive, ftealing with fuch rapidity what it wanted, that more than an equilibrium vibrates from the finger to the bottle; fqr, like other fluids when in motion, it cainot ftop in an inftant.

33d. The electric matter when its equilibrium is affected, or difturbed, always choofes the neareft road, and the beft conductors, to reftore its equality.

I make a chain of fmall links into the initial of my name, fig. 16, Plate XXXII. and attach the wire w to the outfide of a charged jar, making a continuation of the wire x to touch the knob. In the dark, a luminous W is feen; (for a lateral explofion takes place at every round link, from the difficulty that electric matter has of penetrating round or flat bodies). But if the wire $n \mathrm{~m}$ be laid as in the figure, it makes a nearer road, the fire paffes invifibly through it, and only is feen in half the $\mathrm{W}, m z y$. Inftead of the
wire $n m$, if a piece of dry ftick be laid in its place, the electric matter will take a longer circuit, rather than go through a bad conductor; it therefore rejects the ftick, and paffes through the whole W.

34th. Metal is a better conductor than water; as may be proved by beating a hole, with a flarp iron point, in the bottom of a threeounce vial, fig. 18, Plate XXXII. at a; in this hole muft be cemented the wire $c p$. The vial is then filled carefully with water, and corked tight, and through that cork a wire paffes within one tenth of an inch of the wire c. The vial muft be placed on a foupplate. If now the wire, or chain, n, touch the outfide coating of a charged large jar, and the chain s its knob, an explofion will take place between the two wires at c, that will break the vial into the moft beautiful friated ramifications.

35th. The effects of an earthquake at fea, are well imitated by a loofe building of boards, placed on a little boat in a bafon of water: if the water be made part of an electrical circuit from a battery, the report will be remarkably loud; the flafh along the furface of the water, extremely vivid ; the building will be thrown down; and a hand put in the water, will feel a difagreeable fenfation not unlike a hhock.
$3^{6 t h}$. Pofitive and negative electricity mutually attract each other. Balance the round board, fig. 6, Plate XXX. by filk cords, on one end of a fcale-beam, and connect it by a fmall wire to the prime conductor. If another board be placed under this, at about a foot or fifteen inches diftance; when the upper board is electrified, it will draw towards the lower, and when at about an inch diftance,
an equilibrium will be reftored, with a brilliant flafh and loud report.

37th. The earth feems the goal to which electricity has a natural tendency, whether coming from the Sun, its fource, or whether difturbed in, or extracted from, the air, or earth, by machines. No fooner, therefore, is a conducting body, communicating with the earth, prefented to a charged conductor, than its electricity makes an effort to feize that body; not merely becaufe it is a conductor, but becaufe it leads to the place where the fluid wants to difcharge itfelf. This may be feen by prefenting the fame conducting fubftance, infulated, to the charged conductor, when only a fmall fpark will be produced. So lightning ftrikes a tree, a houfe, or a thunder-rod, not becaufe thefe objects are high, or in the neighbourhood of a charged cloud, but becaufe they communicate with a part of the earth which then happens to be in a negative ftate, and to which the lightning would dart, though none of the above objects were in the way to reftore an equilibrium.

This in nowife invalidates the ufe of thunder-rods; as lightning will always take the neareft road, and the beft conductors. If the lightning aims at the negative earth on which a houfe ftands, the houfe will be fecured by the conductor, and demolifhed without it.

38th. That electricity may be condenfed or rarefied, like other fluids, is evident, from uniting a metal mug with the prime conductor, when it is placed on the infulating glafs-footed ftool: for if then a pair of pith-balls, fufpended by flaxen threads, be connectedwith the mug, and a chain be dropt into the mug by a filken thread, and all electrified, the balls will diverge ; but if the chain be gently
drawn out by the thread, the balls will collapfe; when let down again, they will diverge, \&cc.; fhewing that the electricity is rarefied and condenfed alternately, as by the extenfion of the chain the furface is increafed, and by its contraction diminifhed.

This implies that we fhould not be furprifed when we fee the fimall effect a fog has upon the infulated pith-balls, when they are fufpended at the end of a fifhing-rod; the electricity which affifts the rife of this vapour is too rare to affect the balls much, though they are a little: but a cloud, infulated by a dry body of air underneath it, and its electricity condenfed by a continual addition compreffed into it, by the folar ftream, makes efforts to arrive at the earth, to which the utmoft power, accumulated by art, is but as the ftroke of a feather to that of a cannon ball.

39th. To fire gunpowder by electricity. Fix a fmall cartridge on a pointed wire (which fhould be fitted to a glafs handle), and let the wire touch the ground. Prefent the cartridge to the knob of a charged jar, and the powder will be fired by the electric ftream paffing through it. Tinder, or touchwood, may be ignited by the electric ftream in that or any other manner. Certainly this fluid muft be the fame as fire!

40th. Fix a fmall ladle in the end of the conductor, and fire a piece of camphor in it: when the machine is excited, the camphor will throw out a variety of fmall fhoots, like a vegetable. The inherent electricity of the camphor, having its natural repulfion increafed by heat, carries off the glutinous refin in its flight.
$4^{11 \mathrm{ft}}$. To perforate glafs bottles. Fill the vial half full of fallad
oil. Force a fimall wire through its cork, and bend the end that goes into the bottle, fo as to approach near the fide of the bottle, and to be juft covered with the oil : if on the other end of this wire there be a knob, and that knob held near a charged conductor, fparks will dart from the conductor to the knob, and at the fame time from the crooked end of the wire, through the bottle, to the thumb, or any other conducting body preffed oppofite to the end of the bent wire. If the wire be turned to other fides of the bottle, feveral fmall holes may be perforated through the glafs. Does not this arife from the tenacious nature of the oil, which by confining and condenfing the fpark into a line, or point, enables it to penetrate the glafs?

42 d . To imitate the equal manner in which rain generally falls, put a quantity of brafs duft, or filings, into a coated jar ; and when it is charged, invert it, and throw fome of the duft out upon a flat furface; the duft will fpread itfelf equally upon it like rain or fnow. Are not both thefe effects from the fame caufe, viz. an equal repulfion among the parts?

43d. That the coating of glafs has little to do with its electric charge, is proved thus:-Lay a plate of tin or brafs on your hand, and on it a plate of glafs (rather larger than the metallic plate); on the glafs lay another metallic plate, and let this communicate with the prime conductor : thus the glafs may be charged. By the edge of the glafs difengage it from the two plates, and place two other plates in the fame fituation, upon and under the glafs. If now one knob of the difcharging rod be made to touch the under plate, and the other knob the upper plate, a difcharge will enfue the fame as if the firft plates had remained in their place.

44th. Metals owe their conducting power to the latent fire they contain. When vitrified, they ceafe to conduct; when revived, or brought back into a metallic ftate, they conduct again.
4.5 th. In fpring, when plants begin to grow, temporary and electric clouds appear, and pour rain in fmall drops attenuated by electricity. Thefe increafe in fummer, as the folar ftream becomes more direct; diffufing a vivifying firit through the vegetable world, until the fruits are gathered in. This repulfive difperfion of water by electricity, is beautifully exhibited by hanging a fimall metallic vefiel of water on the conductor, with a capillary fyphon in it; the water only drops from the fyphon before it is electrified, but when electrified, the drops divide into numberlefs finaller ones, which are luminous in the dark. Steams and vapours alfo conduct electricity; for if the pith balls are fufpended four feet above the conductor, they will not part; but if hot water, or a frefh blown-out taper, be placed on the conductor, the balls immediately feparate.

Thus have I exmibited this wonderful agent in moft of the lights in which it has yet been feen : and flatter myfelf the reader's deductions from thefe appearances will be fimilar to my own, viz. that electricity emanates in a perfect ftate from the fun and fixed ftars; that its particles repel each other, and fill all fpace; that they have an affinity to the earth and planets, but an affinity that cannot eafily be gratified, becaufe the furrounding atmofpheres are in part non-conductors, being already faturated, and, of courfe, repellent of the electric fluid. Hence the ftruggles which the fluid frequently makes to get through the lower regions of our atmofphere to the earth, caufing thunder, lightning, earthquakes, $\& \& .0$.
for a vacuum *, and the greatly rarefied air, which form the upper fratum of the atmofphere, are conductors, and receive the fluid from the fun without obftruction: it then takes poffeffion of the cloud's, and if the air below be moift, that moifture will conduct it into the earth. But when the lower air is dry, and a non conductor, it is then obliged to ufe frong efforts, to accumulate in fuch quantities as are proportionate to the difficulties of its paffage; it forfakes the clouds with terrible corrufcations; they coalefce (having loft that which kept their particles afunder), and defcend in heavy fhowers. As we have feen that many terreftrial fubftances, when duly impregnated and united with electricity, become permanent air; may not the atmofphere itfelf, formed of the finer and more volatile parts of the earth, be made fluid by their union with electricity? May it not be true that the terreftrial part of the atmofphere being powerfully attracted by the earth, will, of courfe, be much condenfed near the earth's furface, and become more and more rare as we afcend? May not the well-known effects produced on the human conftitution, and the appearance of the air juft before a thunder-ftorm, be occafioned by the fuper-faturation of the atmofphere with electricity? And may not languor, and low fpirits, in moift weather, arife from a want of electricity in the air, \&c.? For eafterly winds always induce diforders, and it is notorious that the air betrays lefs figns of electricity in thofe winds than in any other. Its power of exciting mufcular motion in apparently dead

[^18]animals, as well as of increafing the growth, invigorating the ftamina, and reviving difeafed vegetation, prove its relationfhip or affinity to the living principle. Though, Proteus-like, it eludes our grafp; plays with our curiofity; tempts enquiry by fallacious appearances, and attacks our weaknefs under fo many perplexing fubtilties; yet it is impoffible not to believe it the foul of the material world, and the paragon of elements !

(75)

L E C T U R E IX.

OPTICS.

THIS branch of natural philofophy treats of light, and of the effects produced by its approach to, and paffage through, different mediums. But before we treat of thefe effects, it is neceffary to define what we apprehend light to be. I venture (but with fome diffidence) to pronounce it diluted fire. That attraction and repulfion are the two active agents in inanimate nature, I hope has been fufficiently proved in the firft lecture: that attraction is an inherent property in all matter, except fire, and would, if uncontrolled by its repulfive power, make all nature into one folid mafs, was alfo, I hope, fufficiently evident. It feems, indeed, neceffary, in the prefent order and fitnefs of things, that an antagoinift principle Gould regulate this cohelive tendency ;-and that principle I conceive to be fire. This element exifts in various forms, and has various names, as active fire, latent heat, fenfible heat, electricity, lightning, caloric, and laftly, light: In all thofe 日ates it lofes not its repulfive power; for even in its latent ftate, when chemically combined with bodies, and infcrutable by any of our fenes.
it gives thofe bodies elafticity, and prevents their atoms from forming too clofe an union. It has been a long-received opinion, that light is but a quality, or property, of fire; but I conceive light to be fire itfelf, originally emanating from the fun and fixed ftars, and near thofe bodies, no doubt, of intenfe heat ; but being repulfed radiantly in all directions, it muft-grow more and more dilute; for, that intenfity diminifling as the fquares of the diftance increafe, the denfity of folar light at the fun muft be 45,000 times greater than at the earth: fo that, at the diftance of our earth, it becomes only light, united with terreftrial matter, is evident, becaufe it can be ftopt, or turned out of its way, in its courfe, by any opaque intervening body. That light is progreffive, or rather, that it pervades all fpace, and is only put in motion by the fun and other luminaries, is, I think, more probable than that its individual particles travel from the fun to us in about eight minutes, according to general opinion. It is true, we fee the eclipfes of Jupiter's fatellites $16^{\prime} 24^{\prime \prime}$ fooner when the earth is in that part of its orbit neareft to the planet, than when it is in that part the moft diftant from the planet ; but that does not imply that the individual particles of light fly from Jupiter to our eyes in $16^{\prime} 24^{\prime \prime}$: it certainly proves the effect to be progreffive; for, if we were to conceive a line of particles of light reaching from Jupiter to the eye, and that Jupiter was the agent that put thofe particles into motion; as thofe particles are repulfive and elaftic, the effect of Jupiter's impulfe mult be progreffive; it could not be the fame as if a folid rod were to reach from Jupiter to the eye, for then the impreffion at one end of the rod would be felt at the fame inftant at the other.

But as we conceive elcatricity as the character in which light firft
iffues from the fun; and as electricity paffes through a wire, or any conductor where there is no obftruction invifibly-May it not pafs from the fun invifibly through the conducting vacuum between the earth and fun ; become light when it reaches and becomes chemically combined with the terreftrial particles of air; and fire when chemically combined with the groffer particles of the earth? For when light becomes chemically combined with bodies to which it has a ftrong affinity, even in, or on the furface of the earth, it may be imprifoned, or united by fo powerful an attraction, that if it is excited and difengaged by friction, the fpring of its efcape may make it become electricity again, and produce thofe furprifing effects called by that name.

We alfo fee the fixed ftars a little different in their fituation in one part of our orbit to what we do in another : this is called the aberration of light, and may be underftood by fig. 2, Plate XXXII.; where $a b$ reprefents a portion of the earth's orbit, c the ftar. Aslight is progreffive, and fuppofed to travel from c to b, while the earth travels from a to b, the ftar will be firft feen along the line $a c$ (fuppofe through a tube): now if a tube be kept parallel to its firft pofition, when the earth arrives at e, the ftar will be feen in the line $e m$; for while the earth travels from a to e, light has travelled from c to z; and when the earth arrives at g, the far will be feen along $g w ;$-for the particles of light impelling one another, will have their fenfible effect at z; fo at n it would be feen along the line $n o$. Or if c was confidered as a falling drop of rain, juft entering a tube $a c$, and the tube was kept in the fame parallel pofition while the perfon who carried it ran from a to n; the drop, in that time, would fall from c to n, through the tube, without touching its fides.

Conceiving from hence that light is progreffive, emanating from the fun and fixed ftars, we may alfo conceive that its particles repel, and fly at a great diftance from, each other. This may be proved by the eafe with which the rays of light crofs in the focus of a large lens; or by placing a number of candles in a line before a fmall hole in a fheet of pafteboard, when a fheet of white paper on the contrary fide of the pafteboard will have as many fpecks upon it as there are candles; fhewing that light can iffue from each candle through a hole made with a pin without the leaft juftling or inconvenience. If the particles of light were not, therefore, fmall beyond all conseption, flying with fuch a velocity, they muft come into the eye like fhot out of a gun, inftead of that imperceptible manner in which they impinge upon the optic nerve. Yet fmall as they are (and capable of paffing through tranfparent mediums with little impediment to their motion), their extreme velocity gives them a momentum: for, hang a fmall fteel wire by a magnet, and let the focus of a large lens touch the wire, and it will put the wire into motion. A fimall wire, with a piece of thin copper fixed to one end, was balanced on the point of a fine needle, and enclofed in a glafs cafe to prevent any motion that might be in the air: the focus of a large concave mirror was then directed upon the piece of copper, which it put immediately' into motion, and was computed to have ftruck it with a force equal to the 1800 millionth part of a grain (according to Mr. Mitclrell), on a fquare foot of the earth's furface. This monentum is alfo proved by its tearing in pieces, and difperfing, the hardeft and moit compact bodies, when expofed in the focus of a large lens. Tho momentum of common light is not perceived by cur fenfe of feeling, and fcarcely by fight; for as the particles move at a great diftance from one another, the impreffion of one particle is lof before another fuc-
ceeds. Yet light coming directly from the fun, embrowns our fkin, and inflames and hurts our eyes.

The tail of a comet is obferved always to point from the fun. Is it not more than probable, that it is the ftream, or current, of light iffuing from the fun that caufes it thus to point?

Some comets, indeed, have been obferved to have had the end of the train a little bent. Does not this favour the hypothefis of light iffuing from every fixed ftar as a fun? That currents of light meet in infinite fpace, mix, affimilate, and unite with one another? That ftronger currents abforb, or turn back, the weaker? That the light which mifles the planets of each fun is not loft or wafted, but, affembling and mixing with other light, is kept in perpetual motion ? That light near each fun muft be more denfe than when at a diffance, and, therefore, that the tail of a comet may be in two currents at once, a ftronger and a weaker, and thence derive the inflexion at its remoter end ?

Light is dormant till put into action by a luminous body, or by heat; fo in the night the particles of light are ftagnant (except they are put into motion by the moon, ftars, meteors, \&c. or by candles, or other combuftibles, in a ftate of ignition), but affume their wonted motion again on the rifing of the fun. So fire in chemical union with wood, metals, or any combuftible body, lies dormant, or latent, till forced into action by communicated heat ; and coals, wood, candles, \&c. will not ignite till they are previoufly heated by a body already in a fate of ignition : for fire impels fire, as light impels light ; and affords another proof of the identity of light and fire.

The momentum, or moving force, of light being thus eftablifhed, and, confequently, its materiality, let us trace it through different media, and it will be found alfo to have its affinities like all other matter. I admit a ray of light through a hole half an inch in diameter into a dark room: if the air through which it paffes be of uniform denfity, it proceeds through it in a flraight line; but if I let the ray fall obliquely on a polifhed cube or fquare of glafs, as fig. 9, Plate XXXIII. it will be bent towards the centre of the glafs in its paffage into, as well as out of it. Does not this prove that light is, in a fmall degree, the flave of attraction, as well as all other matter? If the ray be fuffered to fall perpendicularly on the glafs, it paffes ftraight through without any inflection ; becaufe it is attracted nearly in every direction alike. If the fame ray ftrike the infide of an empty bowl placed on the floor, and the place be marked ; it will be found, when water is poured into the bowl, that the ray will not fall on the fame place, but nearer to that where the ray enters the room. Hence alfo an oar appears crooked in the water. The property which tranfparent mediums have of attracting light out of its rectilinear direction in air, is called refraction, and this effect is in proportion to the denfity or fpecific gravity of the medium ; i. e. water does not bend a ray fo much as glafs, nor glafs fo much as a diamond, \&c.. For when light paffes obliquely into a denfer medium, it is refracted or bent towards the perpendicular ; when into a rarer, from a perpendicular to the furface of the medium.

The law of this refraction may be explained by fig. 1, Plate XXXIII. where $b n r$ is to reprefent the furface of water, and $a n$ a ray of light entering the water at n, where it will be attracted out of the fraight line $a n e$, into the direction $n d$. Now it can evidently be feen that
the angle of incidence, $a n b$, is greater than the angle of refraction, $c n d$, the fines of which always bear a proportion to one another; i. e. the fine of incidence, $a b$, is greater than the fine of refraction, $d c$, in glafs, out of air, in the proportion of three to two ; out of air into water in that of four to three, \&oc.

If a ray fall obliquely on a plate of glafs, or on a body of glafs whofe fides are parallel, with the fame angle it entered it, with the fame angle it will leave it on the oppofite fide; fig. 9 , Plate XXXIII.

From this property are derived the ufe and application of all kinds of optical lenfes; and an explanation of various optical deceptions.

Ift. I place a cubical box, s, fig. 3, Plate XXXIII. in fuch a direction that I cannot fee the patch e. If a glafs cube be then put into the box, I fhall fee the patch at a; for we fee every thing in the direction of that line in which the rays approach us laft. This is an axiom in Optics, and may be exemplified by placing feveral mirrors before a candle, as fig. 4, Plate XXXIII.: though rays iffue from the candle in every direction, we will take only one, viz. $a b$ (to keep the figure fimple) ; this ray is reflected to the mirror c, from thence to the mirror d, from d to e, and from e to the eye s. But the mind transferring every object feen, along that line in which the rays came to the eye laft, the reflected lines are put, as it were, to the end of the laft line, $e s$, and the candle is feen at k, at the diftance of all the reflected lines put into one flraight one. So the ray ec, fig. 3, XXXIII. being refracted in its paffage out of glafs into air, into the direction $c r$, the eye perceives it at a, nearly one third of the depth of the box from its bottom.

[^19]By intuition, or inftinct, the eye cannot judge of diftances in air or water, or any tranfparent medium. We learn to difcriminate diftances by experience alone: A child will grafp at the moon with the fame avidity as at a candle within his reach; and a blind perfon brought to fight, believes every object he fees to be touching his eyes. Many a fchool-boy has loft his life, by fuppofing the bottom of a clear river to be within his depth (as the bottom will appear one fourth nearer the furface than it really is) ; and we are worfe judges of diftances in water, than in air. A fifh looks larger in water, than when taken out of it. The diftortion of objects feen through a crooked pane of glafs, in a window, arifes from its unequal refraction of the rays that pafs through it: and a fhilling put in the bottom of a punch-bowl, fig. 5, Plate XXXIII. could not be feen along the line $a b$; but if the bowl be filled with water, the eye will fee the fhilling along the line $a c$. Various and important are the effects of this law, in the order and economy of nature. The fun is feen before he comes to the horizon in a morning, and after he finks beneath it in an evening, by the refraclive power of the atmofphere: and hence we never fee fun, moon, or ftars, in the places where they really are; except they are in the zenith, or right over head; in which cafe their light is fo equally attracted in every horizontal direction, that it paffes through the atmofphere without any refraction. This increafing refraction, from the zenith to the horizon, caufes much trouble in aftronomical and nautical calculations, in taking the real altitudes of the heavenly bodies: which may be better underftood by infpecting fig. 1, Plate XXXIV. which reprefents half our globe, and its atmofphere. A perfon ftanding at a, would fee the fun rife at b, when it was, in reality, only at c (rather more than half a degree beneath the horizon); the line from d to a, a little bent; becaufe
the refractive power of the lower part of the atmofphere is greater than the upper, the air growing gradually rarer, or more thin, the higher we afcend in it.

If a perion at a, had the fun, e, in his zenith, he would fee him where he really is: for his rays coming perpendicularly through the atmofphere, would be equally attracted in all directions, and therefore fuffer no inflection. But about two in the afternoon he would fee him at i, though, in reality, he was at k, thirty-three feconds lower than his apparent fituation. At about four in the afternoon he would fee him at m, with greater error : for now he is at n, one minute and thirty-eight feconds from his apparent fituation. But at fix o'clock (we will fuppofe) he is fetting, and will then be feen at 0 , though he is at that time at p, thirty-three minutes below the horizon. Thefe phænomena arife from the refractive powers of the atmofphere, and the obliquity with which the rays fall on it; becaufe we fee every object we look at along that line in which the rays from it came to us laft: fo that I fee k along $a r$; n, along $a s$; and p, along the line $a t$.

Art has turned the refractive power of glafs to many important ufes: fpectacles, though the fimpleft, are not wanting in eminence; as they prolong the enjoyment of one of our moft valuable fenfes to a date that we fhould not poffefs from nature. They may be made plano-convex, double convex, or concave. The planoconvex lens is plain on one fide, and a portion of a fphere, or globe, on the other ; fee No. 1, fig. 2, Plate XXXIV. If parallel rays fall on this lens, they will be fo refracted in their paffage through it, as to unite in a focus at b (fee fig. 6, Plate XXXIII.), on the oppofite fide
of a fphere, of which the convex fide of the lens may be conceived as a part. The ray $a b$ falling perpendicularly on the lens, and being equally attracted by it, paffes ftraight through without refraction.

The double convex lens, No. 2, fig. 2, Plate XXXIV. has double the effect of the laft, for it affembles parallel rays in a focus at the centre of the fphere of its convexity. The magnifying power of both thefe lenfes depends on this convexity; for the angle of vifion increafes in proportion as the fphere of convexity grows lefs. Thus the angle $c d e$, fig. 12, Plate XXXIII. is larger than the angle $n o p$, fig. 8 , Plate XXXIII. and would magnify any object feen through it more. For every object may be conceived to be big or little, according to the angle it forms in the eye. The pen c, fig. 13, Plate XXXIII. would appear to the inexperienced eye as tall as the tree d; becaufe it makes as great an angle at the eye : and a fmall ball held near the eye will cover the fun. The moon is known to be a mere fpeck in comparifon of the fun; yet fhe appears as large, and can cover his whole difk in an eclipfe, becaufe the is fo much nearer to the earth as to form as large an angle at the eye.

In looking at the crofs $a c$, fig. 11, Plate XXXIII. I fee it under the angle $a d c$: but if I place the lens b between my eye and the crofs, the rays which painted the image on my optic nerve before, viz. $a d$ and $c d$, will be refracted in the directions $n r$ and $o p$; and, of courfe, be ufelefs to the eye. But the rays $a s$ and $c o$ falling on the outer part of the lens, will (according to a former explanation) be refracted to the eye in the directions $s d$ and $t d$, and
form the angle of vifion $s d t$. Hence, as every thing is feen along that line in which the rays come to the eye, the top of the crofs will be feen along the line $d e$, and the bottom along the line $d m$; confequently the lens has increafed the natural angle of vifion $a d c$ to $e d m$. In this figure, rays are only taken from the two ends of the object, that it may not be crowded and confufed with lines; but it muft be underftood, that rays iffue from every part of the object (if it be illumined by the fun, or a candle), and are magnified equally with the two ends. The magnifying power of fpectacles, of refracting telefcopes, microfcopes, \&c. depends on this principle.

The fmall arrow, fig. ${ }_{5}$, Plate XXXIII. is reprefented with rays iffuing from its two ends in all directions ; but it is only thofe rays which fall on the lens $a c$ that the lens can effect; the other rays are difperfed radiantly, and would meet the eye on all fides: hence the reafon why bodies can be feen on all fides, either by direct or reflected light. Direct light is that which iffues immediately from the fun, or any luminous body; reflected light is that which is rejected or thrown back by polifhed, white, or light-coloured bodies on the fides of objects on which direct light cannot fall : and hence the reafon why parts that are in fhade are yet vifible. But refiected light (even from an highly-polifhed metallic mirror) is not quite half fo vivid as direct light. If the fmall arrow, fig. 15, Plate XXXIII. be ftrongly enlightened, a white fcreen at d will exhibit the picture of the arrow enlarged and inverted: for the pencil a $n c$ will unite at r; and the pencil $a \circ c$ will unite at s; and fo will all the intermediate parts of the arrow. Rays that diverge or fpread in their approach to a convex lens, will converge proportionally to a focus
beyond it: folar rays may be confidered as parallel, and converge beyond the lens to the real focus, as at a, fig. 8, Plate XXXIII.

Hence an eye placed at u, or ftill nearer the lens, fig. ${ }^{15}$, Plate XXXIII. would fee the fmall arrow upright; but placed at d, the dart would appear to be inverted on the retina, or optic nerve, as on the fereen $r s$. For all objects of fight, duly enlightened, have their pictures painted on the optic nerve, when the eye is turned to them, as on the fcreen $r s$; from which picture we learn to judge of the length, breadth, fhape, colour, \&c. of all objects we look at.

Not only on the retina, or optic nerve of the eye, are objects painted inverted, for a convex lens produces the fame effect on a fheet of paper held in its focus, as e r, fig. 3, Plate XXXIV. The crofs $a b$ is fuppofed to be fufficiently illumined to pufh its light through the lens $c d$; but we fhall only take a pencil from a, and another from b, that the figure be not confufed with lines. The ray $a c$ becomes influenced by the attraction of the lens, and, agreeably to the laws of refraction (already explained), is drawn towards the centre of the lens, into the direction $c r$. Could the ray $a c$ have gone forward to e, the crofs would have been pictured upright ; but to have done this, Nature muft have invented a new law, different from every attraction we meet with in her works. For all attractions are towards the mafs, or centre, of bodies: of courfe the lens, attracting towards its centre, inflects the ray a c in the direction $c r$; and the ray $b d$ in the direction $d e$. So that the pencil $a c d$ unites at r, and the pencil $b c d$ at e; and fo does the light from every other part of the crofs, and, of courfe, the whole picture is inverted.

Rays being fuppofed to come parallel from the fun, or any very diftant object; a convex lens, held perpendicularly to fuch light, will unite it in its real focus: for converging rays will throw that focus farther, and diverging rays nearer. In fig. 14, Plate XXXIII. the parallel rays $a a$ come to a focus at c. The diverging rays $b b$ unite at d, and the converging rays $s s$ unite at g. So when objects are near the lens, their pictures on an oppofite fcreen will be large ; but the pictures will grow lefs, as the object removes from the lens: fig. 5 , Plate XXXIV. The object a produces the picture A; the object b produces B ; and the fame object at c produces $\mathrm{C}, \& \mathrm{c}$. When convex lenfes are very large, their focus produces on opaque bodies the moft intenfe heat producible by art. One of three feet diameter (having its focus condenfed by another finaller lens) fufed twenty grains of gold in four feconds; twenty grains of filver in three feconds; ten grains of platina in three feconds; ten grains of caft-iron in three feconds; a topaz of three grains in forty-five feconds; cryftal pebble, feven grains, in fix feconds; flint, ten grains, in thirty feconds, \&xc.

Lenfes, therefore, for optical purpofes are (fig. 2, Plate XXXIV.): No. 1, plano-convex ; 2, double convex ; 3, plano-concave; 4, double concave ; 5 , menifcus; 6 , the prifm. For the fame reafon that a convex lens increafes the angle of vifion, and magnifies objects, the concave lens diminifhes them. For the thick part of this lens, fig. 2, Plate XXXIV. No. 3 and 4, is on its olitflde; therefore its attractive and refractive powers are not, as in the convex lens, tending towards a centre, but towards a circumference. Hence the concave lens difperfes the rays, or fpreals them out radiantly : perfectly agreeing with the forementioned laws of refraction, by the obliquity with which they fall on the glafs. Hence alfo their diminifhing power. For if $a b$, fig. 4, Plate XXXIV. reprefent
an arrow feen by the eye along the lines $c a$ and $d b$, and if then I interpofe the concave lens D between my eye and the object, the line $a c$ will be bent towards g, and the line $b d$ bent towards k, and, of courfe, both become ufelefs to the eye. But the ray $a 0$, fuffering a fimilar refraction, will be bent towards the eye in the line $o c$; and the ray $b r$ will be fent to the eye in the direction $r d$. Now as every point of an object is feen along that line in which the ray approaches to the eye laft, the point of the arrow is feen along the line $c o$ at n; and the hilt of the arrow along the line $d r$ at m, diminifhed and diftant.

The menifcus glafs is like the cryftal of a common watch. It neither magnifies nor diminifhes objects feen through it : except its inner and outward furfaces are portions of different fpheres.

The focal length of any convex lens is eafily found, by holding its axis in a line to the fun: the burning point, or the fmalleft fpeck, is its focus; the diffance of that focus from the lens is its focal length.

The fize of an image may be increafed at pleafure by bringing the object nearer the focus of the convex lens.

When the eye and an object are fixt, if a concave lens move from one to the other, the fize of the object will increafe to the middle, and then decreafe again.

The brightnefs of an image increafes with the fize of a convex lens, but decreafes in diftinctnefs; for only the rays which fall on the central part of the lens converge to a point; thofe towards the edge
difperfe as in a prifm, and make the object confufed. Hence the lens of the eye is all covered by the iris, except its centre; and reading-glaffes have their edges ground off, or covered with black horn : this defect is called the aberration of fphericity.

When rays of light pafs near to any body, fo as to come within the fphere of its attraction, or repulfion, a partial refraction, or reflection, takes place: all the colours being bent either towards or from the body; but fome more than others, though at the fame diftance : fo that coloured ftreaks appear both within the fladow and on the outfide of it; the neareft is inflected moft. If n, fig. 6 , Plate XXXIV. be a hair croffing a ray of light, little wider than itfelf, it will repel the neareft $a c$ and $a b$ to the greateft diftance ; and if the edges of two knives approach each other, a ray paffing between them through a hole, made with a pin, in fheet-lead, this repulfive power will be fill more evidently feen.

But of all optical lenfes, the prifm is the moft important and inftructive ; by this triangular piece of glafs are we enabled to analyze a ray of light, and account for the caufe of colours. If a ray be let through a hole, of half an inch diameter, into a room lined with black cloth, and perfectly impervious to all light, except what paffes through the hole, and a prifm interfect it as a, fig. 9 , Plate XXXIV. the ray will ceafe to go forward in the direction $c d$; it will be decompofed, and exhibit on a white fcreen a beautiful fpectrum, confifting of feven primitive colours, viz. red, orange, yellow, green, blue, indigo, and violet. The edges of the adjoining colours feem to melt into, or mix with one another; which makes the line of diftinction between one colour and another not well defined, except the experiment be made with great accuracy. This
definition of limits was, however, effected by Sir Ifaac Newton; in which he found that the width of each colour was agreeable to thefe numbers, viz. red 11 , orange 8 , yellow 14 , green 17 , blue 17 , indigo 11, and violet 22. This is fuppofing the length of the fpectrum of colours to be divided into 100 parts. Fig. 11, Plate XXXIV. will more particularly explain this. If the prifin be held perpendicularly to the ray, and turned, the fectrum will be feen to rife above and fall below a place where it will feem inclined to ftop; when fixed at that place, the fpectrum will be perfect, and if meafured, and divided into 100 parts, each part will bear a proportion to another, as the fpectrum $a b$, fig. 11, Plate XXXIV. which intervals anfwer to the intervals of the diatonic fcale of mufic; i.e. if A L be a mufical ftring divided into two equal parts, the half A A will be an octave to the whole ftring; and if that half be divided into 100 parts, twenty-two of thofe parts will make the interval between A and B , and anfwer to the breadth of the violet colour. Eleven of the fame parts will make the interval between B and C, \&cc. \&cc. Thefe intervals may alfo be reprefented by the aliquot parts of the ftring $\mathrm{A} L$; viz. $\mathrm{A} . \mathrm{B}$ is eight ninths of its length, and forms the boundary of the violet colour; A C makes five fixths of its length, making the limit of the indigo; A D is three fourths of the line A L, and forms the divifion between the blue and green colours, \&ic.

This wonderful conformity between mufical notes, and the refrangibility of light, feems as if our fcale in the major key had its foundation in nature. The analogy is double : there are but feven notes in mufic, exclufive of interpofing femitones; and there are only feven primitive colours in nature; and thefe colours fuffer a refraction in their paffage through the prifm, that marks the pro-
portional diftance at which a performer fhould place his fingers on the finger-board of his violin.

This varied refrangibility we apprehend arifes from the difference of fize, or denfity, in the particles of light. We find the red part of light capable of ftruggling through thick and refifting mediums, when all the other colours are ftopt. The fun, therefore, appears red when feen through a fog. Diftant light, even tranfmitted through blue or green glafs, always appears red ; and lamps at a diftance, feen through the finoke of a long ftreet, are red, while thofe that are near, are white. Dr. Halley's hand appeared red, in the water, when he was in a divers'-bell, at the bottom of the fea. This colour always makes the ftrongeft impreffion on the eye; and a blind man imagined it to be like the found of a trumpet. Are not thefe proofs that red light confifts of the largeft fized particles of light; which, therefore, have a momentum, capable of pufhing through fuch refifting mediums as ftop, or abforb, the reft? accordingly, the red part of light, in paffing through the prifm, is the leaft refrangible of any other ; and the violet the moft, as probably confifting of the finalleft fized particles. If any colour be feparated from the fpectrum by another prifm, it will not change, but retain its colour; which fhews that the colour is in the ray of light, and not in the bodies on which the colour falls. If the red ray be feparated, as fig. 1, Plate XXXV. and made to fall on a blue cloth, it will fill be red, though the blue may mix a little with it. So if the prifm be raifed through the orange, yellow, green, \&c. in fucceffion, the colours will fill be orange, yellow, green, \&c. fhewing that the colour on any body is not the colour of that body, but of the rays it reflects. Why is my coat black? becaufe that hue has fo ftrong a chemical affinity to light, univerfally, that it abforbs the greateft
part of the light that falls upon it, and reflecting little, makes a blank on the nerve of the eye, and we call it black.

In transferring fire from one body to another, heat is always produced (vide Chemiftry) ; fo black cloth expofed to the fun imbibes his rays with fo ftrong an affinity, that, to a wearer, it is warmer in winter, and hotter in fummer, than cloth of any other colour. A piece of black and a piece of white marble, laid on fnow in the fun, demonftrates this: for the black marble will become hot, and melt the fnow; while the white marble, rejecting, or throwing off, all the rays of light, receives little or no heat. Hence we fay, that neither black nor white are colours; for the firft abforbs all, and the fecond rejects all. And hence the coolnefs of white mullins, and their propriety as fummer clothing.

That heat fhould be produced by the abforption of the rays of light that fall on the black body, is ftrongly in favour of light having a chemical affinity to certain bodies, and chemical rejection to others. It unites with avidity with black bodies, and flies from white. May not the colour of all bodies arife, therefore, from this chemical affinity, and this chemical rejection? It is true, black bodies can be feen, though they are confidered as abforbing all the light that falls upon them; for fome light will be reflected from the outficle fibres, or inequalities of the body; and the quick abforption of fuch bodies, and the vibrations made among their particles, by that abforption, will occafion heat, till the union is perfected. And when fuch bodies are heated, fo as to be difpofed to let go their latent light in the character of flame, if they are not black, they univerfally turn fo, before they ignite into flame. This paper is white, yet very combuftible: we muft not fuppofe that it rejects all
the rays that fall upon it, any more than that black abforbs all ; enough will be retained to give it ignition, when air (the other ingredient of inflammability) has fuch convenient accefs to its fingle leaves. But a quire of it, made compact (as in Clay's manufactory), will burn no better than a ftone. Is not flame, therefore, folar light let loofe by combuftion? and is not the colour of bodies a difpofition in them to abforb fome of the feven primitive colours, and reject others? Why is this cloth green? Is there any thing inconfiftent with the known laws of nature, in conceiving, that it abforbs the red, the orange, the yellow, the blue and violet, and reflects the green, which, meeting the eye, impreffes that colour upon the optic nerve? Why is the fun faid to deftroy the colours of cotton, linen, filk, \&cc. ? Is it not caufed by chemical affinity, or chemical rejection? May it not be, that the cloth having a ftronger attraction to fome of the coloured rays, than to the colours with which the ignorant dyer has impregnated his cloth, it rejects the dye; and ftriving to receive the colour intended by nature, confounds both? We are taught by an ingenious experimenter, that we fee colours by tranfmitted, not by reflected light: that light firft paffes through the colouring particles, on the furface of bodies; that it there meets with a white furface, which reflects it back again, through the colouring particles, and that fo tinctured it comes to the eye. Some nice obfervations are made, that a fibre of green wool, cotton, or filk, is white underneath this coat of colour. But how this can be proved, or why light fhould be at the trouble of penetrating the hard furface of a piece of yellow marble trwice, I leave to thofe minute philofophers, who amufe themfelves with puerile fubtilties. It is an excellent rule in philofophifing, not to admit of more caufes than will account for the phænomena. Why may not light have its affinities, as well as the more grofs bodies of the chemifts? D. not
all metals abforb it? Are not the oxyds, or calces of metals, revived by it?

In a dark room, lined with black cloth, if there be a contrivance by which a hand may be put out into the light, without letting light in, thefe experiments may be made:--Put a letter into the light, and keep it expofed to it about a minute; when it is drawn into the dark room, it will be as vifible as the paper you now read from; but it will inftantly begin to emit, or repel, the light, and grow darker and darker, till it becomes as invifible as any thing in the room.

2d. Lay a key on the letter, and put both into the light as before. When they are drawn into the room, the paper will be luminous as before; but the key will be quite invifible, and if taken off the paper, will leave its fhape upon it, as if marked with ink. Are not the abforption of light by the metal, and the rejection of it by the white paper, made vifible by thefe experiments? Light may be forced out of iron prifmatically, by gradually increafing heat. Lay a thin flip of iron on a red-hot plate of the fame metal; the flip will firft turn of a violet colour; as it becomes hotter it will turn blue ; hotter fill, and it will affume a greenifh-yellow hue: if the heat increafe it becomes red; but if that heat be made intenfe, all the rays of light are forced out at once, and it becomes a white heat as workmen call it; for the mixture of the feven primitive rays together, univerfally produces a white. Steel is frequently heated to the blue colour, and there fopt ; hence we have blue fteel trinkets, tools, furniture, \&c. for the furface of the fteel at that heat acquires a difpofition not only to emit blue light, but to have that difpofition fixt by cooling, fo as to reflect blue light long after.

That iron is capable of fuperfaturating itfelf with light, is evident from the copious manner in which it cmits it, when burnt in vital air. For if a piece of fmall iron wire, or a watch-fpring, have a piece of tinder lighted on its end, and then be plunged into a quart of vital air, the metal will burn with a white light too intenfe for the eye to look at. (Vide Chemiftry.)

That light enters into the texture of bodies, and becomes a conftituent part of them, all nature demonftrates. How elfe are we to conceive that the quantity of light poured on the earth by the fun, fince the creation, has been difpofed of? That light is but fire in a greatly diluted or rarefied fate, is proved by condenfing it by a large lens, or concave mirror ; the focus of which ignites combuftible bodies, melts the hardeft metals, and vitrifies bricks, ftones, \&c. and this, independently of air ; for the fame effects take place in vacuo. Even by its natural condenfation in the character of lightning, it produces the fame effects : and forefts, in the torrid zone, have been fet on fire by the fun's direct rays, without either natural or artificial condenfation. Can we, therefore, doubt, That all fire is originally derived from the fun? By the repulfive energy of fire, the folar atoms are impelled through fpace ; and more particularly through that part of fpace which furrounds the plane of the fun's equator. For as the fun revolves on his axis in about twenty-five of our days, it is natural to fuppofe that the centrifugal velocity of his equatorial parts muft give additional velocity to the particles thrown off from thence; and diffufe them through the zodiac (or that fpace through which the earth and planets revolve) with a force that may, perhaps, be one caufe of both the annual and diurnal motion of the planets. (But of this hereafter.) Though a greater quantity of light may thus be thrown off, and diffufed
through the immediate track of the planets, than can impinge upon them; fo that much of that light muft mifs them, and fly feemingly wafte through infinite fpace ; yet, as we find the fixed ftars turn on their axes, in like mamer as our fun ;-that their light comes progreffively to us like the fun's light ; and that they have many other attributes in common with our fun;-can we doubt that they are funs themfelves, diffufing light around them, and giving vegetation to various worlds? How grand is the idea of light iffuing from thoufands of funs; and meeting in different directions without juftling or impediment! (for by mirrors we can make portions of folar light meet one another in every direction, without caufing the leaft obftruction.) We may fee hence that light is not loft or wafted; that it may travel from one fun to another, and that in all directions ; or meeting with more powerful light, may be abforbed into its motion, and turned into a contrary direction to that in which it was originally projected. For, from the manner in which the fun's rays put out a common fire, we fee how the greater momentum of folar light will overcome and turn back the weaker rays of culinary light *: and by placing twenty candles in a row, before a fmall hole in a fheet of pafteboard, twenty fpecks will be made on a fheet of paper on the oppofite fide; fhewing that the particles of light fly at a great diftance from each other, and, therefore, crofs one another without jufting or inconvenience. Need we be furprifed that we perceive no wafte in the fun? that his fize is not diminifhed? or, that his light and heat have loft nothing of their original energy? For the fmall quantity of light abforbed by the planets, can rob him of little; and even this light is perpetually let loofe, and thrown back into the general mafs of light, by combuftion, excited electricity, volcanoes, \&c.

[^20]It is a known fact, that all landsrife above their former common level by cultivation; for, by loofening their texture, it gives freer admiffion to light and air; and how neceffary light is to vegetation, is too well known to be enlarged upon: vegetables confift principally of light ; which, by affinity, becomes incorporated with the earth, air, and water, which form the other parts. For when vegetables are decompofed by combuftion, we find that the quantity of earth, water, or air, contained in them, is inconfiderable when compared to the bulk of the plants. It follows that the light let loofe by the combuftion, formed the greateft part of their mafs. Though vegetables may feem to rot on the furface of the earth, they ftill retain much of their latent light : they raife the furface, where they rot, above its ufual level ; and render much of that furface combuftible. Nay, though thofe vegetables become animal food, and depofit a portion of their latent fire in the fomach, a large portion of it returns to the earth, and contributes to raife its furface, and render that furface combuftible.

Hence the general furface of the earth, as well as its vegetable produce, is univerfally combuftible, or impregnated with folar light, which lies in a latent and infenfible ftate; but which may be called into an active and fenfible ftate by combuftion, fermentation, friction, or ftrong affinities.

Trees, mofs, turf, and even the earth's furface itfelf, are combuftible to the depth of a few inches; below which it may be ignited, or made red-hot, by heat, but not to emit flame, or folar light. Pit-coal may feem an exception; for it is got many fathoms below the furface. If we fill a retort with bruifed coal, and diftil it in the ufual way, there firft comes over a little phlegm,
or water, of an acid finell and tafte ; then a kind of oil, like tarpentine ; after which a thick tar : and a black coal remains behind. Fill a fimilar retort with faw-duft, or wood to be charred in iron retorts, and the fame ingredients will be produced. May not pitcoal, therefore, be antediluvian forefts, turf-mofs, and the fat of fifh, covered by earth in the general deluge? and in burning this foffil, may we not let out light that has been imprifoned five thoufand years? This is not a jeft. Light may be imprifoned (as every one knows) for hundreds of years in dry wood; and when developed, or let loofe by combuftion, may blaze more vividly than when cut down: becaufe, when growing, it was united with much water; and water, both in its natural and gaffeous ftate, has been fhewn to have a peculiar affinity to folar light, to carry it into, and retain it in, a latent ftate.

As the earth's furface rifes by agriculture, or by being opened to the fun ; and thence, has its capacity for receiving folar fire increafed; may not ground thus rifing, and becoming more and more impregnated with the effence of fire, have a progreffive tendency to fpontaneous ignition? When cultivation therefore becomes univerfal, by increafed population, and the earth's furface becomes deeper and deeper impregnated with the principles of inflammability (for putrified or rotten vegetable or animal fubftances, which increafe the earth's furface, do not lofe entirely their inflammable principle, only a part of it is diffipated in their decompofition), may it not come to pafs, what has long been confidered as a prophetical idea, "That the World was to be deftroyed by Fire?"

In the procefs of charring wood, it muft be obferved, that a heap of wood is covered up under a cpat of turf, and then ignited ; air-
holes are made through the turf, to let in juft fo much air as may keep alive the ignition, without fuffering it to blaze out. This being kept up for eight or ten days, the light inherent in the wood becomes concentrated and fixed in the calx of the wood. Or, if wood be roafted in a clofe iron veffel, with apertures for letting out a vapour of water and an acid, fire is fill better concentrated. Bergman proves, that 99 parts out of 100 in charcoal, are of the inflammable principle, or what I call fire. Now, neither fire nor any inflammable principle can be proved to be anywife concerned in the growth of wood, except light be diluted fire: light in combuftion is let out from charcoal in fuch abundance, that but the one hundreth part of an aflh or earth remains.

Drynefs in the air is exhibited by thofe plants that have large and thin leaves, fuch as the gourd, the beet, the petafite in the fields, and the cacalia in the mountains:-they droop and incline on the approach of dry and ftormy weather ; but affume an appearance of vigour when the dews and rain have reftored elafticity to their fibres: fo that the dry air, relaxing and emptying their veffels, gives them the power of abforbing the carbonic rain-water that fucceeds.

Air, as before obferved, is neceffary to inflammation. No flame can take place, or exift, without the vital part of air. Why ?-The air near the earth is mixed with terreftrial particles, which arreft folar fire in its pafiage through it (for air, water, glafs, \&cc. that are really tranfparent; fuffer light to pafs through them, even in its moft condenfed fiate, without imparting any heat to them). The lower part of the atmofphere, therefore, being lefs tranfparent, arrefting a portion of light or fire in its paffage through it, and
that light being alfo heated by reflected light from the earth's furface, they together affift the ignition of combuftible bodies, to a certain height in the atmofphere. For rarefied air will not fupport flame; and, therefore, as the atmofphere grows gradually thinner as we afcend in it, there muft be a height where flame could ņot exiff. This, however, muft be at a great elevation, becaufe we have feen fiery meteors at the height of many miles. Perfectly tranfparent air being thus incapable of receiving heat from folar light, it is the opaque earth that gives heat to the lower regions of the atmofphere; and hence the increafing coldnefs as. we afcend in it.

Perhaps it is the conflict between incident and reflected light, that affifts in giving heat to the earth's furface, and the air in contact with it ; for rays made to crofs one another, always produce additional heat at the place of their meeting. The variety of finooth furfaces among ftones and pebbles by which light is reflected; thechemical rejection of fome bodies to light, by which it is throwns back; and the bending, or refraction, which light fuffers in paffing, through tranfparent fubftances; muft mix and compound the rays. in fuch a variety and multitude of focufes, as to give great heat to the earth's furface, and the air in contast with it. This is powerfully exemplified among mountains on a hot day, where their feveral fides reflect light to one place: in that place the heat is intolerably fcorching! The fandy deferts of Barbary afford another proof, as well as the rocks and fands of all other countries.

The inftinetive tendency which all living vegetables have towards: light, fliews how much it is neceffary to their very exiftence. Clofewooded trees have only leaves on their outfides mext to the light ${ }_{\text {, }}$.
as cedars, laurels, bays, pines, box, \&c.; and where a tree is incumbered with others on one fide, it will grow bufhy and luxuriant on the other : trees planted too clofe, grow very ftraight, very tall, bufhy at top, and elfewhere without branches; always pulhing towards the fun, or tending towards light. Geraniums, growing in a window, turn their flowers towards the light, even near a fire : and plants, growing in the dark, will find a hole (if there be one) through which they will pufh into the light; but if they are doomed to darknefs, they turn pale, and die, as is the cafe with blanched lettuce and other vegetables. It is much the fame with land animals : horfes, dogs, theep, cattle, \&xc. pine away, when long confined in darknefs : and in the human fpecies, miners, weavers, prifoners, \&c. are always pale and fickly; and, indeed, all whofe profeffions are carried on within doors. Owls, and infects that fly by night, are of a whitifh colour; fo are grubs and worms. As vegetables become blanched and colourlefs when fhut out or covered from the light, it follows, that the colour of leaves and flowers is derived from light. Why is grafs green? Is it not that the organization of plants difpofes them to unite chemically with all the rays which fall upon them, except the green part of that light, which they chemically reject, and throw off in all directions; fo that when thofe meet the eye, a green colour is impreffed or painted on the retina, or optic nerve? As light is an affemblage of feven different fized particles, and thefe of different colours, viz. red, orange, yellow, green, blue, indigo, and violet, as ीhewn by the prifm, is it not agreeable to the fame analogv, that differently organized flowers fhould have different affinities, fome rejecting one colour, and fome another ; nay, that one and the fame leaf of a flower fhall, in parts, be of fo different a texture, as to reflect red, blue, violet, \&c. light? The tricoloured violet, or heart's-eafe flower, has one part of
each leaf yellow, and another violet. Examining thefe with the deeper magnifying powers of a microfcope, in a frong light, it will be found that the texture of the yellow and violet parts is very different. In like manner, the red and white rofes will be found to differ in their texture: and that flowers of the fame colour, but of different kinds, will be found to have a fimilar texture. The feathers of the butterfly's wing may be feen, by a deep magnifier, to be of different fhape and contexture in their different colours, \&ic. \&cc. Is it not, therefore, a difpofition in the furface of bodies to reject this or that coloured light, by which they may be faid to be of this or that colour? and do not all paints or dyes merely qualify the furfaces of bodies to reject this or that coloured light? That reflection is occafioned by a repulfion taking place at fome diffance from the furface of the reflecting body, no way militates againft this doctrine; for fire or light is the very principle of repulfion, and no doubt acts, or has an influence, at a diftance from the furface of bodies, particularly when warm. Sir Ifaac Newton feems to have entertained a fimilar idea, in the query, where lie fays, "Are not grofs bodies and light convertible into one another? and may not bodies receive much of their activity from the particles of light that enter into their compofition?" May we not, therefore, conceive that plants and trees derive their different colours from the affinities and rejections they have to particular coloured light? That the indigo leaves abforb blue light; the lignum nephriticum red light: and that infufions of thefe woods only fufficr blue and red light to pafs through them? For, take a fquare bottle filled with a red tranfparent liquor, and another of the fame flape filled with a blue tranfparent liquor, and hold them up before the light, and nothing can be feen through them: for the red bottle ftops the blue light ; and the blue bottle
flops the red light; fo that the two held together become as opaque as a piece of coal. If a growing red rofe be placed near, and in the light of, a decanter filled with a blue tranfparent liquor, 'and the decanter juft fill a hole in the fhutter of a dark room, the rofe in a few days will acquire a bluifh tint.

Many tranfparent mediums reflect one colour, and tranfmit another, as is the cafe with the infufion of lignum nephriticum, which fuffers the red light to pafs through it, and rejects the green. So, leaf-gold held before the light is green; by reflecited light, yellow.

It is more than probable, that in hot climates (or in hot weather in our own), vegetables. become fuperfaturated with light, and emit a portion of it; for heat increafes its repulfive property: but in this radiant emanation, a quantity of the effential oil of the plant will be carried off along with it, and produce thofe aromatic odours, fo agreeable to the fenfe of fmelling.

This is ftrongly exemplified in pieces of odoriferous bodies floating on water: the emanation is fo ftrong, that from the reaction of the water, the pieces will whirl round as if they were alive. Thin pieces of camphor will always be curled up when fhaved off by a knife ; and falling on water, will only touch it in one part ; for the oilinefs of the gum, and its lightnefs, will make. it repel the water, fo as fcarcely to touch it. From the parts of the camphor elevated above the water, the ocoriferous fream is fo ftrong, that, pufhing againft the water, it is put into a circular motion, which will continue for fome hours, if the furface of the water be kept clean, by laying filtering paper
upon it; but the fmalleft drop of oil ftops the motion in ann inftant.

The refins and volatile oil of plants are conceived to be derived from light. Some plants contain this ftrong fmelling matter in their young branches; fome in their leaves and buds; fome in the calyx of their flowers; and fome in their barks. But without light, neither colour, tafte, fmell, combufibility, growth, flavour of fruit, or this refimous principle, would have any exiftence! Hence it is, that, in hot climates, where light is more pure, refinous or aromatic fubftances more particularly abound. Light alfo qualifies plants to emit vital air: for frefh leaves put into an inverted glafs veffel full of water, will produce a pint of this air in a few days, if expofed to the fun's light. It difengages vital air alfo from the nitric acid, the oxygenated muriatic acid, \&c. \&cc. and reduces the oxyds or calces of gold, filver, copper, lead, \&c. to their metallic or reguline ftate.
"Organization, fenfation, fpontaneous motion, and life, exift only at the furface of the earth, and in places expofed to the light." We might affirm " that the flame of Prometheus's torch was the expreffion of a philofophical truth which did not efcape the ancients. Without light, nature would be lifelefs. A benevolent God, by producing light, has fpread organization, fenfation, and thought, over the furface of the earth." Lavoifeur.

But to return to the refrangibility of light in the prifin, drops of rain, \&c. It is certainly evident, from former experiments, that the refrangibility of different coloured light bears an invariable proportion to the fize of it particles: i. e. that the red part of light,
confifting of the largeft fize, has therefore the greateft momentum (or moving force), and, of courfe, is the leaft liable to be tumed out of its way by the prifm, or any other attracting medium ; that the orange is the next in fize and refrangibility; and fo on to the violet, which confifts of the fmalleft fized particles, and is, therefore, the moft turned out of its direction. In other words, the refrangibility is inverfely as the fize of the particles. That thefe colours are inherent in their different fized particles, and incapable of being changed into any other, will be proved by fig. 4., Plate XXXV.; where a ray of light is intercepted by the prifm n, and throws the colours on the black fcreen m, in which there is a finall hole, a, that will admit the green part of the fpectrum to pafs through. - If that green ray be received by the prifin 0 , it will be green on the fcreen e : if that fcreen was of wood, ftone, or metal, of any colour whatevcr; or if e was a mirror, and reflected the ray to d; fill the green colour would remain unchanged and unchangeable. If the hole in the fcreen m was fhifted, fo as to receive the red, the blue, or any other part of the fpectrum, it would be found that neither refraction nor reflection would alter the colour. Colour, therefore, is effentially in the rays of light, and not in the bodies that either reflect or refract them. Now, if the lens $b c$ be held perpendicularly to the diverging prifmatic rays, they will be brought to a focus at g, and that focus will be white ; flewing that the mixture of the feven colours together produces a white. If oil colours on a pallet were mixt together in the proportions as fig. 11, Plate XXXIV. viz. violet as 22, indigo as 11 , blue as 17 , green 17, yellow 14, orange 8, and red 11, they would produce white. So if a circle, fig. 7, Plate XXXIV. was painted in its compartments, agrecably to the divifions, fig. 11, Plate XXXIV. viz. $22,11,17,17,23,8,24$, and put into a fwift circular motion,
the whole circle would, in ftrong light, appear white ; for its colours would, by that motion, be mixt as on a painter's pallet.

Why, therefore, is this paper white?-Becaufe it reflects the reateft part of all the rays that fall upon it. Why is fnow white?Every flake of fnow being but an affemblage of frozen globules of water fticking together, it reflects and refracts the light that falls upon it in innumerable directions, fo as to mix it as intimately together as in the whirling fectrum ; and, of neceffity, to produce a white image in the eye. A cafcade is white for the fame reafon.

Many contend that there are but three primitive colours, viz. red, blue, and yellow, becaufe out of thefe three can be made (by mixture) all the feven; for any colour may be produced by mixing the two immediate contiguous colours in the prifmatic circle, fig. 7 , Plate XXXIV. Suppofe I wifh to make a violet by mixture ; indigo is on the right, and red on the left of that colour, in the circle ; thefe mixed in the proportion as in the circle will produce the colour. Now as red occupies 11 parts in the circle, and indigo 11 parts, equal quantities of thefe colours mixed on a pallet will produce violet. Or, if a circle, fig. 8 , No. 1, Flate XXXIV. be painted one half red and the other indigo, and whirled round, the colour of the circle will be violet.

Blue and yellow produce green with this proportion, viz. Blue occupies a fpace of 17 in the circular fpectrum, fig. 8, No. 2, Yellow - - ${ }^{14}$ [Plate XXXTV. Of the 100 parts - $\overline{3^{1}}$ is the proportional fpace for blue and yellow. So, as 31 is to 100 , fo is 17 to 55 nearly; and as 31 : 100, : : 14: 45 .
A circle, therefore, No. 2, divided, fo that 55 parts of it were
blue, and 45 parts yellow, its fwift circulation would produce a green. In like manner, 'green and orange produce yellow. Yellow and red, orange, \&cc.

Thefe three colours have fill a further claim to being primitive, as their proportional mixture, like that of the feven, produces white.

Red occupies 11 of the 100 parts in the prifmatic circle, fig. 7 , Blue - 17
[Plate XXXIV.
Yellow - 14
So, as 41^{2} is to 100 parts, fo is 11 to 26 , for red;
as $4^{2}: 100: \quad: \quad 17: 40.4$ for blue;
as $4^{2}: 100: \quad 14: 33 \cdot 3$ for yellow :
100 nearly.
If, therefore, a circle be formed of 100 parts, and 26 parts be coloured red; 40.4 parts, blue; and 33.3 parts, yellow; as fig. 8, No. 3, Plate XXXIV.; the circle when put in motion will be white.

But though a violet may be produced by blending red and indigo; a green, by blending blue and yellow; and an orange, by blending yellow and red; yet the violet, green, and orange, fo produced, are compounds, and not like the real prifmatic colours; for let them be paffed through a fecond prifm, and they become decompofed into their original or elementary colours.

Any three adjoining colours in the fpectrum, when combined, produce the middle colour; the proportions found as above: $\left.\begin{array}{ll}\text { Red } & 2.5 \\ \text { Violet } & 50 \\ \text { Indigo } & 25\end{array}\right\}$ This union produces violet, \&cc.

Any four adjoining colours in the fipectrum, when united in their due proportions as above, a tint intermediate to the fecond and third colours will be produced. For the firlt and third produce the fecond, which is intermediate; and the fecond and fourth produce the third, which is intermediate to them; confequently the tint produced by all four will be the fame as would have been produced by combining the fecond and third, or the two intermediate colours. Hence the effect of thefe combinations is the fame as in the primitive colours, i. e.

Beginning therefore with any of the feven colours in the fpectrum, and taking the other colours in the order as above, fourteen combinations may be made, each producing white.

If four following colours be taken in the fpectrum, as violet, indigo, blue, green, a fhade intermediate to the fecond and third will be produced, and white may be produced by that fhade, or tint, combined with one prifmatic colour.

Violet 22, indigo 11, blue 17 , green 17 , added, make 67 indigo blue.
Yellow 14, orange 8, red 11, added, make - 33 orange.
So treo colours may be faid to make white - 100
Indigo 11, blue 17 , green 17 , yellow 14, added, 59 blue green.
Orange 8, red 11, violet 22, added, . - 41 red.
So a blue, green, and red, make a white - 100

The fame holds good with the reft of the feven colours; and which produces perhaps the moft harmonious combination of colours poffible, for drefs, for apartments, or any fubject where colours are employed for embellifhment.

The effects of thefe combinations account for the impreffions left on the retina of the eye, by viewing different coloured pieces of filk laid on white paper : if a piece, about an inch diameter, be held about half a yard from the eye, and looked fteadily at a minute, and the eye be then directed to another part of the paper, a fpectrum will be feen the fize of the filk, but of a different colour, viz.
Red filk produces a blue green fpectrum.
Orange \quad -
Yellow
an indigo blue.
Green - \quad a violet indigo. \quad a red violet.

Now thefe fpectra are precifely of the colours which (combined with that colour which produces them) compofe white.

The above experiments alfo account for the fingular effect of fhadows when light paffes through differently coloured glafs (fee the experiments, page 144). If two thadows produced by two candles, one tranfmitting the light through a coloured glafs, the light of the other falling immediately on the object that produces the fladow, the effect will be

If the glafs be Violet, the fhadows will be violet, and green yellow.
Indigo, - indigo, and yellow orange.
Blue - - blue, and orange red.
Green - green, and red violet.
Yellow - yellow, and violet indigo.
Orange - orange, and indigo blue.
Red - - red, and blue green.
Colours that are faded, by being kept in darknefs, become renewed by returning to light.

Catoptrics.-This branch of Optics treats of light, as reflected from variounly figured polifhed mirrors or bodies. How light is thrown back from the furface of bodies muft be firft enquired into. The reafons for its being reflected by a kind of chemical rejection, or want of affinity, have been pretty copioufly given. But as fuch an opinion as that of the great Newton ought to be precedent to that of an humble admirer of his philofophy, without title or aca-. demical honours, he begs leave to give that the firft place, in fpeaking upon the fubject of Catoptrics.

If the edge of a knife approach (very flowly) a ray of light, paffing through a hole made with a pin, in a thin theet of lead, into a dark room, the ray will be feen to recede from the edge of the knife, in the direction $a d$, inftead of its ufual ftraight direction $a b$; fee fig. 5, Plate XXXV. This fingle experiment has been thought fufficient to eftablifh the doctrine, that light was reflected before it touched the furface of the reflecting body; that it approached that critical place, where the fphere of attraction ended, and where the fphere of repulfion began, and from that place was
thrown back. As it has been proved, in the firft lecture, that the elafticity of bodies was occafioned by the repulfive power of fire or light incorporated with them; and as all bodies in nature are fubject more or lefs to the two contending powers of attraction and repulfion, there muft be a fpace or point where thofe two powers will balance each other. Suppofe, for inftance, the line $a b$, fig. 10, Plate XXXIV. was the furface of a body; and the line $c d$, the boundary of attraction and repulfion; that is, the place where the fphere of attraction is faid to end, and where the fiphere of repulfion begins, as reprefented by the arrows in the figure. It is not, however, to be underftood, that the fphere of attraction completely ends at $c d$, or that repulfion begins there; but that the attractive tendency towards c, and the repulfive tendency towards g (from the fire within the body), balance one another at $c d$. But as heat increafes the repulfive power of fire, either in a latent or an active ftate, and cold diminifhes it, the line $c d$ muft be very uncertain in its diftance from, or in the body; for, in extreme cold, I fhould fuppofe the boundary would be within the body. But, in hot or cold, colours remain much the fame, and light is reflected much alike. How is this reflection then to be brought about, by an imaginary fpace, where the fphere of attraction is faid to end, and that of repulfion to begin? Reflection may be affifted by an emanation from the reflecting body of the light it has already imbibed; and, when in a ftate of heat, may emanate fo powerfully as to turn the weaker rays back, before they touch the reflecting body. Chemical attraction is but the attraction of cohefion, applied to particular bodies, faid to have an affinity, or choice, in their union with one another. Diamonds have an affinity to light; fo have various phofphori: white bodies may alfo be faid to have a chemical averfion to light, and to throw it all off: other bodies mays
only have a chemical rejection to a particular part of light; as green cloth rejects the green, and abforbs the other fix parts of the light that fall upori it: other bodies may reflect two colours, fo mixt, that they are diftinct from any of the feven primitive colours. Therefore, from the flades and mistures of different colours', arife that diverfity of hue in filks, cottons, linen, \&cc. that almoft exceeds the power of numbers. It is true, dyes do but confift of three colours, red, blue, and yellow; for from thefe (by mixture) can all the reft be made.

When light impinges, or falls, upon a polifhed and flat furface, rather more than half of it is reflected, or thrown back, in a direction fimilar to its approach; that is to fay, if it falls perpendicularly on the polifhed furface, perpendicularly it is reflected. But if it falls obliquely on the looking-glafs $a b$, fig. 2 , Plate XXXV. with the fame obliquity it will be reflected. The incident ray $c d$ is thrown back in the direction $d o$, making with the perpendicular, $d s$, the fame angle that $c d$ does with it. For it is a rule in catoptrics, that the angle of incidence is always equal to the angle of reflection; that is, the angle $c d s$ is equal to the angle $o d s$, in all cafes of obliquity. So a ray from the ftar d, falling on the looking-glafs $a b$, fig. 3, Plate XXXV. would be reflected to the eye at e : but as we fee every thing along that line in which the rays come to us laft, the ftar d is feen at s; agreeably to the above law, that the angle of incidence $\varepsilon \circ n$, is equal to the angle of reflection $n \circ d$.

Why do I fee my face in a looking-glafs? - If the face be ftrongly illuminated by the fun, or a candle, it may be faid to emit light, particularly towards the mirror $a b$, fig. 12, Plate XXXIV.: but (not to croud the figure with lines) we will take a ray from the
forehead $c e$, which, agreeably to the angle of incidence, and reflection, will be fent to the eye at o : but the mind puts $c e o$ into one line, and the forehead is feen at b, as if the lines $c e o$ had turned on a hinge at e.

Indeed it feems a wonderful faculty of the mind, to put the two oblique lines, $c e$, and $o c$, into one fraight line $o b$; yet is it feen every time we look at a mirror; for the ray has really travelled from c to e, and from e to o, and it is that journey that determines the diflance of the object: and hence we fee ourfelves as far beyond the looking-glafs as we ftand from it. Though a ray, in this cafe, is only taken from one part of the face, it may be eafily conceived, that rays from every other part of the face muft produce a fimilar effect; and, therefore, that the whole face will be feen as far beyond the glafs as the face is from it.

As the human eye is placed in the higheft part of the body, the whole perfon may be feen in a looking-glafs of but half its length and breadth; as in the mirror $a b$, fig. 6 , Plate XXXV. the rays from the head travel to the mirror in the line A a, perpendicularly to the mirror, and are returned to the eye in the fame line, viz. $\dot{a} \mathrm{~A}$: confequently, having travelled twice the length $\mathrm{A} a$, a man muft fee his head at B; rays from his feet C, impinging on the bottom of the mirror at b, will be reflected to the eye, in the direction $b A$. But feeing his feet along the ray that approaches his eye lait, he fees his feet at d, along the line A $b d$, and fo of all the reft of his perfon.

Thefe examples may ferve to prove that the angle of incidence, and the angle of reflection, are always equal: and, if properly unVOL. II.
derftood, will eafily explain the effects of diverging and converging rays; of concave, convex, cylindrical, or any other kind of mirror.

If rays come diverging to a mirror, they will diverge, in their reHection, the fame as if they had gone forward: thus the rays $a b$ and $b c$ would go on towards f and g, if not met by a mirror; but by it they are turned into the direction $m n$, fig. 7 , Plate XXXV.

The converging rays $a b$ and $c d$, fig. 8, Plate XXXV. would go on, and meet at 0 , if not prevented by a plane mirror, which fo turns them as to make them unite at n.

Converging rays, iffuing from the object $a b$, fig. 9, Plate XXXV. would be narrow enough to enter the pupil of the eye at c; but being met by the mirror $d e$, they reflect converging to the eye n, which fees the object $a b$ at s, behind the glafs, with the fame obliquity as it was before the glafs.

As a circle may be conceived to be made up of innumerable ftraight lines, fo may a globe, or a llice of a globe, be conceived of innumerable fmall flat planes: thefe planes, lying obliquely to one another, will reflect the rays of light diverging; and, of courfe, convex mirrors fpread out the rays that fall upon them; thereby diminifhing the appearance of the object, and painting it nearer to the mirror.

Fig. 10, Plate XXXV. $a b$, is a dart, to be feen in the convex mirror $c d$: but though rays iffue from the dart in all directions, and to every part of the mirror, yet it is only thofe that fall upon
it in the fpace between 0 and n that can be reflected to the eye; agreeably to the law, that the angle of incidence is always equal to the angle of reflection. This law fends the rays or and $n r$ more diverging than if the mirror had been out of the way; for in that cafe they would have united at p. Hence the angle or n, being fo much lefs than $a p b$ (had the eye been at p), the image s will be lefs than the object, and nearer the mirror.
N.B. Large objects near a convex mirror, appear bent; becaufe one part of the object is nearer the mirror than another, fo as to produce a fenfible difference of angle: this is fometimes called the aberation of fphericity.

A perfon looking at his face in a convex mirror, has it diminifhed, as fig. ${ }^{1} 1$, Plate XXXV . To keep the figure diftinct, a ray may be taken from his forehead, and another from his chin. Now, though rays flow from his forehead fo as to cover the whole mirror, it is only the ray that falls at c that can (agreeably to the law refpecting the angle of incidence and reflection) be reflected to his eye. But his eye, transferring every image along that line in which the ray comes to it laft, fees his forehead along the line ocn. So the ray from his chin a r will, agreeably to the fame law, be reflected to his eye at 0 , and of courfe he will fee his chin along the line or s. Now the angle of vifion, $n \circ s$, being fo diminifhed, the reft of his features will be feen diminifhed in like proportion.

Concave mirrors enlarge the appearance of objects, by increafing the vifual angle, for the fame reafon that the convex diminifhes objects by contracting the angle. Both concave and convex mirrors are generally a portion of a fphere ; and the inner furface of a
fphere brings parallel rays to a focus at one fourth of its diameter, as may be feen in fig. 12, Plate XXXV., where folar light would unite and burn at the focus a. Or, if a candle were placed in that focus, its light would be reflected parallel, as in the figure.

The magnifying power of the concave mirror may be illuftrated by fig. 1, Plate XXXVI. where a face, A, is looking at itfelf. We fhall here again, for the reafon given, only take a ray from the forehead, and another from the chin. Rays iffue from every part of his face upon all parts of the mirror: but it is only $a c$ that can paint his forehead; that ray is reflected to his eye from c; and as he fees every thing along that line in which the ray comes laft to his eye, the mind puts the lines $a c$ and $o c$ together, and they make the line $o c d$, the real diftance which has been travelled by the ray from his forehead, and where his forehead will be feen. Certainly rays iffue from his forehead on all parts of the mirror; but thofe rays that fall on the mirror at g, would be reflected to his chin ufelefsly, fince he cannot fee with his chin. In fhort, it is only that critical place c which (by the law of the angle of incidence and reflection) can be reflected to his eye.

The ray from his chin, that falls upon the mirror at n, will, by the fame law, be reflected to his eye; and along the line on q he will fee his chin. The whole vifage being, therefore, feen under the angle $d o q$, muft be greatly magnified.

If the dart $a b$, fig. 2, Plate XXXVI. be held above the eye, and before a concave mirror, $c d$, it will be feen by an eye at 0 , magnified, at $s t$. For the ray $b n$ will be reflected to the eye in the direction $n 0$: fo $b n$ being put to the end of $n 0, b$ will be feen at s.

A ray, a m, from the other end of the dart, will approach the eye in the direction $m o$; and $a m$ and $m o$ put together, will make the line $o m t$, where that end of the dart will be feen, confequently the dart $s t$ will be the image of the object $a b$ greatly magnified.

Thefe effects only take place when the object is between the mirror and its focus. But when the object is farther diftant than the focus, the rays crofs, and the objeci (if feen) is feen before the mirror, and inverted. Thus, if the concave mirror be large, as $a b$, fig. 4, Plate XXXVI. and a hand be held up before it, and without its focus, its image inverted will be feen hanging in the air at m. For rays go diverging from a point, as c and d; and by the mirror are brought again to a point at 0 and s, where they crofs, and in that ftate proceed to the eye.

Hence if a man, holding out a fword, approach a large concave mirror, an opponent feems to meet him with a drawn fword : and a perfon holding out his hand in approaching the mirror (at a diftance farther than the focus), will have another meeting his, as if inclined to thake hands with him. If the hand turn a little on one fide, the image will move the contrary way, \&c. Hence alfo thofe deceptions (where a mirror is concealed), of birds and angels flying: the hand attempts to lay hold of them, and finds them nothing. A nofegay is feen, and when the hand attempts to take hold of it, a death's head fnaps at it, \&c. \&c. If a large concave mirror be fo placed before a bright fire, that its image may be feun on a table; thofe unacquainted with the caufe, exprefs the utmoft aftoniffment on feeing a fire burning on a table!

If two large concave mirrors be placed oppofite each other, as.
fig. 5, Plate XXXVI. at any diftance, and red-hot charcoal be held in the focus at a; a match, or brown paper, or any thing very combuftible, held in the other focus at b, will be prefently ignited: fhewing that common culinary fire is liable to the fame flexibility as light.

Hold a decanter, half full of water, a little farther than the focus, from a concave mirror ; and the decanter will be feen inverted: if then the water be poured into a bafin, the decanter will appear in its natural fate, and to be filling inftead of being emptied.

Thefe deceptions may be multiplied into innumerable varieties. Prieftcraft, availing itfelf of the properties of the concave mirror, rekindled the veftal fire: and Archimedes is faid to have burnt the Roman fleet with one.

Anamorphofes are produced from the pictures of objects as feen in concave cylindrical mirrors; which diftort objects by bending their images into the fame curvature as the mirror: thus, if a face look at itfelf in the cylindrical mirror $a b$, fig. 3, Plate XXXVI. it will fee itfelf elongated like the figure A . But if this figure were drawn, and a convex cylindric mirror placed before it, it would be brought back to its true figure B.

Having thus gone through what may be called the principles of optics, it is now time to apply thefe principles to the explanation of optical inftruments, vifion, and the rainbow.

The rainbow is certainly the moft beautiful meteor in nature.

As it never makes its appearance but when a fpectator is fituated between the fun and a fhower of rain, it follows, that the fun and drops of rain caufe the phenomenon. If an hollow glafs globe be filled with water, and fufpended fo high in the fun above the eye, that the fpectator, with his back to the fun, can fee the globe red; if it be lowered flowly, he will fee it orange, then yellow, then green, then blue, then indigo, and then violet; fo that the fame drop, at different heights, fhall addrefs to the eye the feven primitive colours in fucceffion. Example.-Let A, fig. 8, Plate XXXVI. be a drop of rain, and $S d$ a ray from the fun falling on the upper part of the drop at d. It will fuffer a refraction, and inftead of going forward to c, it will be bent to n; there it will be in part reflected to q; for fome will pafs through the drop to m : by the obliquity with which it falls on the fide of the drop at q, that part becomes a kind of prifm, and feparates the ray into its primitive colours. Hence we find, that after a ray has fuffered two refractions and one reflection, as in the figure, the leaft refrangible part of it (the red) will make an angle with the incident folar ray of $42^{\circ} 2$, as $\mathrm{S} f g$; and the violet, or greateft refrangible ray, will make with the folar ray an angle of $40^{\circ} 17^{\prime}$, as Scg . This holds good at whatever height the fun may chance to be in a fhower of rain : if high, the rainbow muit be low ; if the fun be low, the rainbow is high: and if a fhower happen in a vale when a fpectator is on a mountain, he often fees the bow completed to a circle below him. So in the fpray of the fea, or a cafcade, a circular rainbow is often feen; and it is but the interpofition of the earth that prevents a circular fpectrum being feen at all times, the eye being the vertex of a cone, whofe bafe (the bow) is in part cut off by the earth. The drop, therefore, in falling the diftance $b g$, will addrefs to the eye, g, the feven colours in fuccefition; but that fucceffion is fo
quick, and fo many other drops fall through the fame circuit in the fame time, that the mind lofes the idea of fucceffion, as it would in a whirling firebrand, and the bow feems permanent fo long as the fhower continues in the proper direction from the eye. Cones, therefore, paffing from the eye through a fhower, and making the above angles with folar light, will always produce a rainbow : and hence, if feveral people are ftanding together, looking at the bow, they every one fee a different bow; for they are each the vertex of a different cone. The bow, therefore, moves as the fpectator moves; for the eye E, fig. 6, Plate XXXV1. by the fmalleft motion ceafes to be the centre of the fpectrum $a b$; and other drops, in another circle, producing the fame effect, make him believe it the fame rainbow. Suppofe the outermof circle, $c c$, the plane, through which the drops falling, produce the red colour to the eye E ; and that the loweft circle, $d d$, produce the violet; fo that the intermediate circles may be conceived as interior cones cut through the fhower, one within another : then would drops paffing through thefe furfaces produce the feven colours, though fome might be within a few inches of the eye, and others fome miles from it; for wherever the above angles took place, either in near, or in diftant drops, the colour would fill be the fame.

Thefe are the circumftances that produce the interior or principal bow : but a faint exterior bow generally accompanies the principal bow. 'This is produced by drops of rain above the drop A, as B, where the ray to be fent to the cye enters the drop near the bottom, and fuffers two refractions and two reflections; by which the colours become reverfed, i. e. the violet is loweft in the exterior bow, and the red is lowef in the interior bow, and fo of the reft. The ray T fuffers a refraction at r; part of it is re-
flected from s to t, and from t to u : we fay part of it, becaufe a portion of the ray paffes through the drop at s towards τ, and another portion at t towards x : by thefe loffes the exterior bow becomes faint and ill defined, in comparifon of the interior bow. Let us now carry thefe principles to the bow itfelf. The fpectator A, fig. 1, Plate XXXVII. being in the centre of the two bows in the figure (the planes of which muft be conceived as perpendicular to his view), the drops a and b produce part of the interior bow by two refractions and one reflection, as above; and the exterior, by the drops $c d$ producing two refractions and two reflections: the fun's rays being reprefented by the lines s s s. The angle formed by the red ray in the exterior bow and the folar rays is of 51°; and with that of the violet ray, of 54°.

On Vifion.-As the eye is the grand inlet to moft of our pleafure, no wonder that a more than ordinary attention has been paid to the ftructure of that divine organ. It is placed in the higheft part of the body to command diftant profpects; moves eafily in a cavity of bone in every direction; is wiped and protected by lids that keep perpetually opening and fhutting; and fmaller accidents are prevented by a palifado of lafhes. Its interior ftructure is not lefs curious. Light only has natural accefs to the fenfitive part of this organ; but by any other impreffion the optic nerve produces in the mind the idea of light: fuch as a blow upon the eye ; thrufting the fingers againft it; or a fudden thock or furprife. This film is the medium between corporeal impreffion and fenfation; it is the handmaid that conveys to the mind images made upon it by light from outward objects. It is not fight; but it is a fcreen on which a picture is painted, and held to the mind's eye. This im-
preffion is made by the optical inftrument called the eye: the ftructure of which is as follows:

1ft. The fclerotica, a ftrong, unelaftic coat, that holds tenacioufly the optical part of the eye within it globular concavity; on the outfide of which are faftened the mufcles that direct the eye towards objects, with their oppofite ends faftened to the cavity of bone in which the eye moves; fo that, by the contraction and dilatation of thefe mufcles, the eye is moved in all directions with the utmoft quicknefs. One part of the fclerotica is tranfparent, and bulges a little out of the globular figure; as a c, fig. 3. Plate XXXVIII. In the human fubject it is round, and forms the front part of the eye; in many other animals it is oval: this prominence is called the cornea; from its being fo like horn, and fo well calculated to tranfmit light.

2d. Within this lies a foft pulpy lining, called the choroid membrane, circle 2, fig. 3, Plate XXXVIII. black in the human fubject, white in cats and owls, and green in animals that live upon grafs and vegetables: this feems a lining or bed for the optic nerve to lie upon ; and is of too weak a texture to acquire motion by mufcular action, except at its extremities, which form a circular ring of mufcular fibres, called the iris, as $s s$, and thefe fibres furround a round hole for light to pafs through, called the pupil, as 0 . The iris, $s s$, is of different colours in different people, as blue, black, grey, \&c. and fuppofed to be fo irritable, as to be affected, and to contract, by ftrong light, and relax by darknefs, or weak light. This is very obfervable in a young child: when juft awake, the pupil will be almoft as large as the cornea, $a c$; but on being brought into the fun, the pupil will contract to the fize of a pin's
head. A wife provifion! for, as the child has not yet acquired ftrength to move the head or eyes, was intenfe light to ftrike the retina when the pupil was fo open, it might injure that delicate membrane, fo as to render it infenfible, and induce the difeafe called gutta Serena. By holding a candle clofe to a cat's eye, the fame contraction is obfervable.
$3^{\text {d. On }}$ the choroid membrane lies the retina, or optic nerve, the fenfitive part of the eye, circle 3, fig. 3, Plate XXXVIII. This nerve, like all others, is but a continuation of the medullary matter of the brain ; it enters the eye on one fide of the axis, or line of vifion, at u; and, like a fine net, fpreads over the whole interior furface of the eye. It is of an afh-coloured white; fo that by the black bed, or back ground, on which it lies, colours and fhapes muft be very diffinct upon it ;-for it is on this fine membrane that objects are painted by the cryftalline humour, as a window would be by a common fpectacle-glafs, on a fheet of paper ;-from which picture our mind conceives the fhape, the colour, and diftance of all objects we look at. This film is reprefented in fection by line 3, but its entrance, u, is infenfible; for if three black fpots, of about half an inch diameter, be placed in an horizontal line, a foot from each other, as $a b c$, fig. 7 , Plate XXXVIII. and a perfon ftand four feet from them, if he cover his left eye, A, and look fteadily with the other at the left-hand fpot, a, the middle fpot, b, will difappear, though he will fee plainly the two outfide fpots, a and c. But on looking with both eyes at the three fpots, it will be evident, from the figure, that the fpot b, which falls on the entrance of the optic nerve in the cye, B, will not fall on the optic nerve in the cye, A; and therefore, in looking at the three fpots with both eyes, we fee them perfectly. A blood-veffel enters the eye with
the optic nerve, and feems to indicate a mufcular energy in it; particularly at its extremities in the ligamentum ciliare, which unites it with the cryfalline humour, d, at $b b$, fig. 3, Plate XXXVIII. This radiant proceflus furrounds the cryftalline humour, d; and perhaps, by its mufcular force, may elevate or deprefs it, fo as to adapt the humour to near or diftant objects. For the vitreous humour, B, which fills up the general body of the eye, is a jellylike tranfparent fubftance, very flexile, and capable of fuffering the cryflalline humour to be depreffed into, or elevated above it; fo that the eye may be a globe, or a prolate fipheroid (an egg-like figure), as is moft convenient for feeing near or diftant objects. This we conceive to be the ufe of the ciliary ligament ; for certainly the eye affumes a different figure, whenever we ftrain it to fee diftant, minute, or indifinct objects.

5 th. The cryftalline humour, d, is a lens of great magnifying power, very denfe, and made up of thin lamillæ, fo that if fome of the coats become difeafed, and opaque, as in the cataract, they may be feparated or depreffed, without much injury to the reft; though it is not uncommon to extract the whole lens, or pref's it into the vitreous humour. This lens has its focus on the retina, and, like other lenfes, paints any luminous or illumined object at that focus. The middle part of it may be feen through the pupil of the eye; its ouffides are wifely covered by the iris, to prevent prifmatic colours from confufing vifion; for the edges of all deep magnifying lenfes are, in reality, prifms. It is made ftill more achromatic by,

6 th. The aqueous humour, os s, which, with a limpid water (ineapable of freezing), fills up the fpace between the comea, $a c$, and
the cryftaline, d; and in the middle of which is the iris, s. Thefe are the coats and the humours of the eye, which is, as we have faid, an optical inftrument, admirably calculated to paint objects on the retina or optic nerve: for infance, if I were looking at my pen, its picture on my retina would be the bent inverted figure, feen in the eye A, fig. 6, Plate XXXVIII. agreeably to the effeit of the double convex lens, as before explained. But, if inverted, why do I fee it upright?-All our fenfes may be faid to be modifications of the fenfe of feeling. When I lay a finger upon my arm, the nerves paffing that place, convey to my mind the fenfe of feeling. - If I prefs that finger againft my eye, the retina conveys to my mind a fenfe of light: impreffions of a like nature made on my tongue, or the recefs of my nofe, would produce the fenfations of tafte and fmelling: and could I touch the nerves of the ear with my finger, no doinbt, the fenfation would be like a clap of thunder, or fome prodigious noife. All which thews our fenfations to be produced by mechanical impreffions : and light, as a material and moving fubftance, can make a mechanical impulfe upon the fenfitive part of the eye, and proluce upon it fomething like feeling; (for the boy couched by Chefelden thought, when he firft faw the light, that every object touched his eyes). But the retina differs from the nerves of feeling, in that it has no perception whbere the impreffions of light are made upon it. It was neceffary for ourprefervation, that we fhould promptly diftinguifh where any impreffion was made on the outfide of the body; but, for a fenfe inclofed within the flkull, that kind of perception was umeceflary; and we never find that nature does any thing in vain. Could I perceive, that when I hold a candle below my eye, it was painted on the upper part of the retina; or that when I held the candle above my eye, it was painted on the lower part of the retina; the:
objects I look at would certainly appear, as the picture, inverted. But I have no fuch perception: I only know, by diffection, in cutting away the fclerotica and choroid membrane from the back part of the eye, and holding a candle before it, that the candle is inverted, and painted as above. But the dead eye has all the parts of the living eye, and therefore the effects muft be the fame. The end of the pen c, fig. 6 , Plate XXXVIII. being painted at a, and the other end, d, at e, fhews the pen inverted; but I do not feel it inverted ; the retina does not inform me that the top is painted at bottom, and vice verfa: but as it is a property of the mind, to transfer every object along that line in which the rays approach the eye laft, the rays from c approach the retina at a; and the rays from d touch the retina at e : The mind, therefore, transferring the end c along the line $a g c$, to the place where it is; and the end d along the line $e g d$, to the place where it is; of courfe the object muft appear to the mind upright, notwithftanding its inverfion on the retina. Diftinct vifion requires the rays iffuing from any object to come tolerably parallel; for, the more they come to the eye converging, the more indifinctly is the outfide of the object feen.

Objects appear large or little according to the angle in which the rays from them approach the eye: thus, the picture of my pen on the retina of the eye B, fig. 6, Plate XXXVIII. is but half the fize it is in the eye A ; becaufe it is twice the diftance from it: for the angle of vifion, $c g d$, is double that of $c f d$. Yet I can judge of the fize of the pen at B as juftly as at A ; but this is from experience ; for we learn to fee by time and obfervation. A child grafps at the moon, as it would at a candle within its reach; and a perfon couched, and brought to fight of a fudden, believes, as before ob-
ferved, that every thing touches his eyes. Had the ftudy of optics, or nature, been a part of the education of our forefathers, ghofts and apparitions would not have affected their imaginations. Indiftinct vifion in the night, mineral and animal matters mixed with light, fpontaneous ignition by inflammable exhalations, and electricity, \&c. would have accounted for the caufe of all their fears. For the impreffions made on the retina, like pain in feeling, will laft many feconds after the impreffion has been made; fo that ignorance would conceive fomething feen, even when the eyes were fhut. If the eye meet a glowing fun, and inftantly clofe, a white image of him will be ftrong on the retina : continuing fhut, the image will turn violet, then blue, then green; and, if the impreffion were very ftrong, may go in gradation through all the prifmatic colours. Is it not probable that the retina has a power of abforbing light, and that the weakeft is abforbed firft, the blue next, and the red (as the ftrongeft), laft of all? Heat, however, expels latent fire, or light: Canton's phofphorus, hermetically fealed in a glafs, and held in the fun to imbibe light, is quite dark in a dark room; but if held near a hot iron, the light will appear fo vivid, that the hour may be feen upon a watch in the dark: but the whole of this light may alfo be expelled by heat; and it will become quite dark till again impregnated with light by being expofed to the fun. Common phofphorus, heated by being rubbed between pieces of brown paper, inftantly ignites. Fuel will not: part with its latent fire, until it is heated, \&c. \&c. and iron will not: burn, even in vital air, till heated.

The general defects of the eye are, too long a fight, or toc flort; and fquinting. As the cryftalline humour partakes of the general decay of old age, and grows flatter; fo its focal length increafes;
hence age is obliged to hold objects very diffant from the cye, to make their image come to a convergence on the retina; otherwife, if held at about fix or eight inches (the ufual diftance for diftinet vifion), the image would be imperfect on the retina, as the focus of the cryftalline is farther than the retina : this will appear in fig. e, Plate XXXVII. in the cye A; where the flatnefs of the cryftalline, c, would have its focus at r, beyond the retina, e. This defect is remedied by the fpectacle-glafs $d d$: which may be confidered as a part of the cryftalline; making up, by its bulgency, the want in the cryftalline; fo that both together they make one lens of the fame focal length as the cryfalline was in youth; and the image becomes diftinctly painted on the retina. This fpectacle muft increafe in bulgency as the cryftalline grows flatter ; and hence the neceffity of its frequent change.

The fhort-fighted defect arifes from the cryftalline and cornea being too convex : for by bringing the rays to a focus in the vitreous humour at r, before it reaches the retina, as in the eye B , fig. 4, Plate XXXVII. the image will be as indiftinct as in the old eye. Hence, without a fpectacle, objects are held clofe to the eye, that the rays may converge farther back: but a concave fectacle, $c c$, by its attraction towards its edges, fpreads the rays outward, and thereby counteracts the too great contraction of the cryftalline; fending forward the image r to the rctina g; agreeably to a former doctrine relative to the effects of concave lenfes.

Squinting is a difeafe of the mufcles which move the eye in its focket. If one becomes rigid, and will not give way to the action of the other mufcles, this will hold the eye in one pofition; as is the cafe with thofe eyes that always feem looking towards the nofe.

Other eyes fquint partially, as when the mufcle that directs the eye one way, is not a balance for its antagonift mufcle.

A fpeck, or cataract, is fometimes on the cryftalline, and fomietimes on the cornea; commonly occafioned by inflammations in the eyes. If it be before the pupil, its opacity, ftopping the rays of light, occafions blindnefs. The edge of the cornea being feparated from the white of the eye, needles can be introduced to deprefs the fpeck, fcratch it off, prefs the whole cryftalline into the vitreous humour, or totally to extract it. Nature will fupply another cryftalline, or fill up the cornea with a matter that will fupply its place, with the affiftance of a deep or bulging fpectacle.

Optical Inftruments.-The Galilean telefcope is one of the moft ancient inftruments of its kind ; called fo from the juftly-celebrated philofopher Galileo, of Tufcany. This telefcope, with which he difcovered Jupiter's fatellites, \&c. confifts only of two glaffes, a convex and a concave lens; and is, at large, what our opera-glaffes are in miniature. Suppofe a b, fig. 5, Plate XXXVII. a dart at a diftance, which I want to magnify: if the object-lens $c d$ (in the end of the tube) be held parallel to the dart, it will bring the rays from it to a focus at $r n$ (according to former explanations), and a paper held there would exhibit the picture $r n$, if the object $a b$ be fufficiently illuminated. But if I interpofe betiveen the picture and the lens the concave e f, whofe attractive power is toivards its outfide; it will then turn the ray $b c o r$ into the direction $b c o q$; and the ray $a d o n$ into the direction $a d o m$; and fo of the rays $a c n$ and $b d r$. The lens, $c f$, is made in the figure much too large, that it might not be perplexed with crowded lines; but it muft be fuppofed, when held clofe to the eye, that the fpace 00 is not VOL. II.
bigger than the papil of the eye; fo that the diverging rays o q and $o \mathrm{~m}$ are continued to the retiria. But this cannot be true, for only a few of the rays enter the eye, and therefore the object is feen very imperfectly; and the infirument is feldom ufed but for fhort diftances, as in opera-glafies, \&xc. Now as that fenfe tranffers every object along that line in which the rays laft approach it, the lower end of the dart is feen along the line q o s; and the upper end along the line m o t; the image maguified and brought nearer. The diftance between the two lenfes muft be the difference between their focal lengths; i. e. if the focal length of the lens $c d$ be twelve inches, and that of $e f$ four inches, then the difference is eight inches, the length of the tube; and the magnifying power will be three times: (the number of times the focal length of $e f$, is contained in the focal length of $c d$).

This telefcope has the moft light of any; but the finallnefs of the field of view is its greateft defect.

The Night-Glafs-Is a refracting telefcope for difcovering diftant fhips in the night: it commonly confifts but of two lenfes; an ob-ject-glafs $a b$, and an eye-glafs $c d$, fig. 1 , Plate XXXVIII. This inftrument fometimes lias a double eye-glafs to prevent prifmatic colours; but this is a defect, for every lens reflects and lofes a quantity of light from its two furfaces, and in the night there is no light to lofe: the lenfes, therefore, are large, to concentrate as much light as poffible; and every object is inverted. The topmaft ef (teing all we fuppofe that can be feen above the water) having its lighit rcfracted by the object-lens $a b$, and brought to a focus at g, has its image there inverted within the tube of the inftrument: the eye-glafs $c d$ being placed in coincidence with the focus of the ob-
ject-glafs $a b$, fend the rays into the eye \mathbf{E}, in the direcuion $c o$ and $d n$, forming on the retina the image $o n$. Every part of an image being transferred along that line in which the rays approach the retina laft, the bottom of the object, f, is feen along the line $o m$; and the top along the line $n s$, greatly magnified. As this telefcope inverts all objects, they feem to move the contrary way to the motion of the inftrument; and its magnifying power is as the focal diftance of the object-glafs to the focal diftance of the eyeglafs; i. e. if the focal diftance of the object-glafs be twelve times as much as that of the eye-glafs, then will the object feen be twelve times as long, and twelve times as broad, as when feen by the naked eye. This telefcope was made formerly of thirty or forty feet long; nay, its object-glafs was fometimes fixed upon the top of an high tower, fo as to be adjufted by a wire communicating with the eye-glafs at bottom: for lenfes of a very long focus unite the rays, and prevent the prifmatic colours that generally furround the field of view, and, of courfe, leffen the diftinctnefs of the object. For feeing terreftrial objects upright, we ufe

The Refracting Telefcope.-This inftrument differs not much in principle from the laft; but by having two convex lenfes, c and d, fig. 8, Plate XXXVII. placed on the oppofite fides of the fphere of their convexity, the image is rendered upright: and two eycglaffes, e and f, magnify the image, $s t$, to the fize S T. The object, therefore, to be magnified, AB , being by the object-lens a brought to a convergence, and its image painted within the tube at b, the rays paffing through c and d give the fecond image $s t$: this inage is fo magnified by the eye-glaffes e and f, that it appears to the eye, \approx, under the angle $\mathrm{T} \approx \mathrm{S}$.

But to render this inftrument achromatic (that is, its field of view colourlefs), we muft firft enquire what caufes the circular prifmatic rings of colour in ordinary fpy-glaffes. Let parallel rays pafs near the edge of the lens $w x$, as v and n, fig. 6 , Plate XXXIX. and they will be found not to affemble in a point : the moft refrangible part (the violet) will affemble at o; and the leaft refrangible part (the red) at p; and fo of the intermediate colours. Hence the focus of the lens, $w x$, will be a circle, whofe diameter, $a b$, is perhaps half an inch, or more; of courfe fuch an object-glafs as this (its edges having this prifmatic effect) muft tinge the field of view with red, blue, green, \&c. Now the fuggeftions of Newton, the endeavours of Euler, and the finifhing of Dolland, have united thefe fcattered rays into one mathematical point. Thefe were the means, viz. The difperfive power of glafs is very different. Crown-glafs is compofed of fand, fluxed by means of the afhes of fea-weeds, barilla, or kelp; and has the leaft difperfive power of any glafs: plate-glafs is made of fand, melted by means of fixed alkali; and has a greater refractive or difperfive power: and fint-glafs is compofed of flintfand, melted by means of fixed alkali and minium, and has a greater refractive or difperfive power than either of the other. If, then, the lens $w x$, fig. 6 , Plate XXXIX. be of crown-glafs, and the concave lens $c d$, of white flint-glafs (the concave of the fame radius as the convex), they will fit into one another, and become, as it were, one lens. They are placed at a diftance from each other in the figure, for eafier explanation. Now, as the difperfive power of the concave lens is towards its outfide, while that of the convex lens is towards its centre, they will counteract the effects of each other, and the Teaft refrangible ray will be made to meet the moft refrangible ray at z and y. Thus the violet ray $w o$, being bent the contrary way by the lens $c d$, will meet the red ray, and all the reff,
at z; and the leaft refrangible ray, viz. the red, $w p$, being bent at i, will pafs on to z, croffing the general focus there. The fame effect will be produced on the rays $x 0$ and $x p$ by the concave lens $c d$, and they will affemble at y. Now here are two colourlefs points produced, viz. z and y. Cannot they be united? Yes: by the convex lens $g b$; which will join thie two focufes in the mathematical point k. So that one combined lens is formed by two convex lenfes of crown-glafs, and a concave lens of flint-glafs between them.

This achromatic effect may be produced by an union of one convex and one concave lens; but not fo well as by the above three: and the proportional denfities of the glaffes to each other, require much profeffional practice and attention; for the greater difference there is between the difperfive powers of the convex and concave lenfes, a larger aperture can be admitted, and of courfe the object will be more enlightened. To produce this difference, lenfes have been made of two menifcus glaffes joined together, and filled with a pellucid liquor, the refractive power of which being much lefs than glafs, would produce this difference; but it is difficult to keep. any fluid from growing turbid for any length of time.

This compound achromatic object-glafs giving fo perfect an image of the object, can, in a tube of a few feet, admit of as great a magnifying power in the eye-glafs as were in tubes of eighty or 100 feet long.

The moft advantageous eye-glafs is the one invented by Divini, and called Ramfden's eye-glafs, being two plano-convex lenfes, with their convex fides inzwards, and placed fo near as to be withinz.
each other's focus: the field of view is the moft extenfive, and the image leaft injured by the prifmatic cffect of the edges of the lenfes.

In double convex lenfés, the moft perfect is that whofe radius of curvature of the firft furface, is to that of the fecond, as one to fix: its aberration being the leaft poffible, viz. $\frac{15}{\frac{1}{4}}$ of its thicknefs: but if this glafs is turned with its other fide to the rays, the aberration will be $\frac{145}{42}$, and therefore would be much worfe. The fame ratio holds good in concave lenfes.
N.B. The French plate-glafs, and Englifh crown-glafs, reflect fewer rays, and admit more to pafs through, than any other kind of glafs.

Common object-glaffes will not bear an aperture and power larger than the following:

Focal Dittance of Object-glafs.	Aperture of Object-glafs. Diameter.	Focal Diftance of Eye-glafs.	Magnifying Power.
Feet.	Inches.	Inches.	
1	0,545	0,605	20
2	0,76	0,84	27,6
3	0,94	0,04	33,5
4	1,08	1,18	39,5
5	1,21	1,33	44

The Reflecting Telescope.-This inftrument performs by reflecting the rays iffuing from any object, what the laft did by refracting them. Let $a b$, fig. 8, Plate XXXVIII. be a diftant object to
be viewed : parallel rays iffuing from it, as $a c$ and $b d$, will be reflected by the metallic concave mirror $c d$ to $s t$, and there brought to a focus, with the image a little further and inverted; agreeabiy to the effect of a concave mirror on light, as formerly defcribed. The hole in the mirror $c d$ does not diftort or hurt the image $s t$, it only lofes a little light; nor do the rays ftop at the image $s t$; they go on, and crofs, a little before they reach the fmall concave mirror e n : from this mirror the rays are reflected nearly parallel through the hole 0 , in the large mirror; there they are met by the plano-convex lens $b i$, which brings them to a convergence at m, and paints the image in the fmall tube of the telefcope clofe to the eye. Having by this lens, and the two mirrors, brought the image of the object fo near, it only remains to magnify this image by the eye-glafs $k r$; by which it will appear as large as $z y$, agreeably to former documents.

To produce this effect, it is neceffary that the large mirror be ground fo as to have its focus a little fhort of the fmall mirror, as at q; and that the fmall mirror fhould be of fuch a concavity as to fend the rays a little converging through the hole 0 ; that the lens $b i$ fhould be of fuch convexity as to bring thofe converging rays to an image at m; and that the eye-glafs $k r$ fhould be of fuch a focal length, and fo placed in the tube, that its focus may juft enter the eye through the fmall hole in the end of the tube.

To adapt the inftrument to near or remote objects, or rather to rays that iffue from objects converging, diverging, or parallel, a fcrew, at the end of a long wire, turns on the outfide of the tube, to bring the fmall mirror nearer to, or farther from, the large mirror; and fo as to adjuft their focufes according to the nearnefs or re-
motenefs of the objects. The fum-glafs, at the end of the fmall tube, fhould be unfcrewed when any other object, except the fun, is looked at.

To eftimate the magnifying power of the reflecting telefcope, multiply the focal diftance of the large mirror by the diftance of the fmall mirror from the image m; then multiply the focal diftance of the fmall mirror by the focal diftance of the eye-glafs $k r$; divide thefe two products by one another, and the quotient is the magnifying power.

Though reflecting telefcopes are generally confidered as better for celeftial obfervation than refractors, they muft be of an unwieldy fize, or they want diftinctnefs, becaufe it is calculated that not half the rays that fall on the fpeculum are returned.

Of Microfcopes.-Thefe inftruments affift the eyes in examining the minute parts of creation ; and bring into view wonders of a different, though not of a lefs curious and extraordinary nature, than thofe perceived by telefcopes. They fwell into magnitude atomical exiftence, thereby fhewing the animal economy to be as perfect in the mite as in the elephant; and almoft oblige the mind to conceive an idea of organized nothing.

The Single Microfcope-Confifts but of one fmall lens, as $a b$, fig. 4, Plate XXXVIII. Now the angle under which the eye would fee the fmall crofs (without the lens), would be the fpace between the lines which go from the top and bottom of it to the eye. But if the lens be interpofed between the eye and the object, thofe lines would not meet at the eye; they would fall above and
below it. But (by laws formerly explained) the rays $c a$ and $d b$ would enter the cye; and as the mind transfers every image along that line in which the rays approach it laft, the top of the crofs will be feen at m, along the line o a m; and the bottom at n, along the line $o b n$. The angle of vifion being thus increafed from $e o d$ to $m o n$. The lens $a b$ may, therefore, be confidered as a fpectacleglafs, and as having its magnifying power, from thus increafing the angle of vifion.

It is alfo fitted up in a handle, with moveable tongs or forceps to hold plants, infects, \&ic. and thence called a field, or botanic microfcope.

The Double, or Compound Microfcope. -This inftrument, like the telefcope, prefents the eye with the image, and not with the object itfelf, as in the fingle microfcope, fig. 2 , Plate XXXVIII. The lens $d e$ is placed a little farther from the object $a c$, than its focal length; fo that the pencils proceeding from each end of the object would unite at o and n, if not met by the lens $r s$. This image would be too large for the eye, or the eye-lens $t u$, to take in. For rays iffuing from objects are very different from thofe iffuing from an image : an object may be feen on all fides, if illumined by either direct or reflected light; but an image can only be feen in the direction of the axis of the lens that produces it; therefore the image $o u$ is brought within the influence of the eye-glafs $t u$, by the lens $r s$. If now the eyc-glafs $t u$ be fo placed, that the image θn be in its focus on one fide, and the eye in its focus on the other; the top of the image will be feen along the line $z t \mathrm{~m}$, and the bottom along the line $\approx u v$, confequently magnified under the angle $m \approx v$.

Solar Microfcope-This entertaining inftrument confifts of one plane mirror, and two lenfes : the mirror so, fig. 5, Plate XXXVIII. is to be without the window fhutter $d u$; the lens $a b$ in the fhutter ; and the lens n within the dark room. Thefe three parts are united to, and in, a brafs tube; and the mirror can be fo turned by adjufting fcrews, that however obliquely the incident rays A fall upon it, they (by the laws of the angle of incidence and reflection) can be reflected horizontally into the dark room through the illuminator $a b$: this lens collects thofe rays into a focus near the object $c g$; where paffing on through the object, they are met by the magnifier n; here the rays crofs, and diverge to the white fcreen, where the image, or fhadow, of the object, $q r$, will appear. The magnifying power of this inftrument depends on the diftance of the white fcreen ; and, in general, bears a proportion to the diftance the object $c g$ is from the magnifier n; that is, if the fcreen be ten times that diftance from the lens n, the image will be ten times as long, and ten times as broad, as the object. About ten or twelve feet is the beft diftance ; for, if further, the image will be obfcure, and ill defined, though larger: the lens n is brought nearer to, or farther from, the object, by an adjufting fcrew, fo as to exhibit the image clear and fharp upon the fcreen. This part of the inftrument is calculated only to exhibit tranfparent objects, or rather fuch as light can pafs through in part; but for opaque objects we ufe the

Opaque Microfcope.-Ores, flowers, infects, fhells, \&cc. are feen to great advantage by this inftrument. The mirror a, fig. 6, Plate XXXVII. and the lens c, are the fame as thofe of the folar microfcope; but the converging rays from c are met by a diagonal mirror $e n$, which throws up the rays much condenfed upon the
opaque object $s r$; from the object they are reflected to the magnifier o, from which they proceed diverging to the fcreen $p q$, where the object will be painted, and greatly magnified.

The objects are generally ftuck by a wafer, or glue, to a thin flider of wood, and not placed in the focus of the lens c, left they might be burnt.

The Magic Lantern.-The office of the fun in the folar microfcope is performed in this inftrument by a candle, or lamp; rays from which pafs through the lens a, fig. 7 , Plate XXXVII., befides others reflected by the concave mirror c. Thefe rays are interrupted by the inverted crofs, which, if coloured, muft fuffer them to pafs on to the magnifying lens e; here they fuffer fuch a refraction, as to go diverging to the fcreen, where the crofs will be feen duly magnified. The lens e muft be brought nearer to, or farther from, the object, till its focus exhibits the image clear and well defined on the fcreen. Ludicrous figures, well painted in tranfparent colours, have a laughable effect in a dark room; and ferious fubjects, fuch as the motions of the heavenly bodies, can be well reprefented by this inftrument.

The Camera Obfcura-Is fometimes made for viewing prints or pictures, and magnifying them; and fometimes for taking landfcapes, \&cc. When the glafies are fixed in a box, or on a fland, their intent is to magnify pictures, as fig. 3, Plate XXX V II. where $a b$ is a plane mirror, placed at an angle of forty-five degrees with the horizon, and $c d$ a large lens, placed perpendicularly before it. If then a picture, $e f$, be laid inverted under the mirror $a b$, and be ftrongly enlightened by the fun, or by candles, rays iffuing from
it in all directions, thofe that impinge on the mirror will be reflected to the lens $c d$; which will bring them to a focus on the retina of the eye E . Now the eye transferring every part of an object along that line in which the rays from it came to the eye laft, the top of the object will be feen in its right pofition along the line E.c a i, and the bottom along the line $\mathrm{E} d k$, greatly magnified.

Miscellaneous

EXPERIMENTS, DECEPTIONS, \&゚c.

A FEW years ago the Brethren of the Trinity-houfe applied to me to give a defign for a light on St. Mary's Ifle, in the iflands of Scilly. That important ftation required a light of great intenfity ; of large volume; to be feen on all fides; and to be diftinguifhed from all other lights. Confidering that much light is reflected from the two furfaces of lenfes, and, of courfe, loft to diftant obfervation; and that mirrors added much to the natural light of a lamp, in one direction ; I united feven parabolic concave mirrors in one perpendicular frame, as fig. 1, Plate XXXIX., with an Argand's lamp in the focus of each mirror. The mirrors were twenty-two inches in diameter, of copper, plated with polifhed filver furfaces; fo that the volume of light is five feet and a half in diameter, and appears like one united blaze of light at a diftance: the refervoirs of oil are fixed behind each mirror. To diftinguifh this light at fea from all others, and to enlighten all fides of the horizon in fucceffion, I contrived a machine to turn the whole frame of lamps round on the upright fhaft, a, in two minutes; the light thus appearing and difappearing at the end of every fecond minute, gives the approaching feaman a perfect affurance what light it is. As it is a property of the parabolic curve to reflect the light that falls upon it, from c its focus, in parallel lines, as $d d$, \&c. the whole feven mirrors fend out a cylinder of light, that, as it paffes the fpectator, appears for a moment of unufual fplendor; fo that by obferving that, and the next return of its brilliancy, by his watch, he eafily perceives it to be the Scilly light.

This was the firft on this plan of feveral that have been copied from it.

2d. Large lenfes, and concave mirrors, painting the image of objects in their focus, if they are well enlightened, give fcope for variety of deception : to ftand, with the eye in the axis of a large convex lens, the image of the object will be feen in that line, as if fufpended between the lens and the eye. A large metallic, or glafs, concave mirror, placed on the back part of a dark box, produces appearances that are truly furprifing. Let a, fig. 3 , Plate XXXIX. be the mirror ; d the actor, concealed by the crofs partition $c ; c$ a ftrong light, alfo concealed by the partition i. If d holds a book, or any other object, the light reflected from it will pafs between the fcreens, or partition, c and i, to the mirror, and be from thence reflected to z, where the image of the book will appear fo tangible, that the fpectator, looking through the opening x, will fuppofe he could take hold of it. The confederate d may actuate various moving figures, as flying birds, angels, demons, \&c. the effects of which at z would be very furprifing.

3d. If the head of a pin (or any fmall object), a, fig. 2, Plate XXXIX. be held near the eye, and before a fmall hole in the black pafteboard c (the light, or the white paper d, being a background), the pin will appear on the oppofite fide of the board c, inverted, and magnified as x. The object a being within the focus of the cryftalline humour s, will caufe the image of it to be painted on the retina at r without inverfion; i. e. it will be painted on the optic nerve with the fame end up as it is held in the hand, and, of courfe, appear inverted. But, in reality, it is the fladow of the "pin that is painted on the retina; for the light from the lower part
of the paper d will be ftopped by the head of the pin; and that from the upper part will be ftopt by the leg of the pin, in paffing through fo fmall a hole as a; and thofe rays cannot crofs within the eye as ufual, but will go parallel and upright to the retina; fo that, to the mind, the object mult appear inverted. A pin's head cannot be feen when held fo near to the eye as to be within the focus of the cryftalline humour, as at a, fig. 8, Plate XXXIX.; therefore the mind transferring it to that focus, feems to remove it behind the fcreen c. For by the mufcles of the eyes they can be turned fo that their axes may meet at any convenient diftance with the moft rapid facility, as at $b c d g, \& c c$. But when the mind is carelefs, or thinking on fubjects in which the eyes have no concern, the mufcles return to the eafieft pofition, and often make each eye look a different way; fo that the object g would be feen double, as $g g$.
4.th. Radiant rays iffuing from a cloud, feem as if the fun was in the cloud; but this is one of thofe celeftial deceptions to which the eye is very liable. When the fun is behind a cloud of various forms and thicknefs, rays iffue from it, as fig. 5, Plate XXXIX. : thefe rays are reflected from the different parts of the cloud in various angles, yet all appear to the eye as if perpendicular to it, though fome of them approach it almoft in a direct line; for the eye being lefs accuftomed to contemplate celeftial then terreftrial objects, it judges very erroneoufly of both diftances and directions. Suppofe the ray $a b$, fig. 4, Plate XXXIX. iffuing from the luminous point a, and coming obliquely towards the eye c, the eye would forefhorten it into the line $a d$: hence the radiant appearance of rays in the moifure that furrounds the cloud.

5 th. Thus are the fhort rays, reflected from the moift and polifhed edges of the eye-lids, lengthened, when they are nearly clofed, and the eye directed to a fingle candle, about fix feet diftant. Let $a c$, fig. 7 , Plate XXXIX. be the eye-lids half fhut; then will the rays $a b$ fall obliquely on the furface a, and be from thence reflected through the cryftalline humour to the retina at d : the rays $b c$, in like manner, will fpread on the retina at e. But feeing every thing along thofe lines that approach the retina laft, the rays d a produce the unfteady fpectrum $g b$; and the rays $e c$ the fame, in the direction $b b$; growing longer or fhorter, as the eye opens or fhuts.

6th. From the colour of fhadows on a white ground; the colour of mountains feen at a diftance ; and what is called blue fky; it appears, that the colour of the atmofphere is a diluted blue; a colour that can only be perceived, when large maffes of the air are looked through: hence the earth feems furrounded with a fky of a blue colour; and painters give their diftant mountains that hue. A very furprifing effect of fhadow is produced by placing a red flat piece of glafs, a, fig. 9, Plate XXXIX. before the candle d, and holding a pencil, c, between it and the fheet of white paper $x x$. If another candle, g, be placed a few inches from the firft, two fhadows of the pencil will be produced on the paper, $x x$; that from d, through the red glafs a, viz. $e c$, will be a fine green; and that from the candle g, viz. $n x$, will be a deep red. Now, that the fhadow $n x$ thould be red, is not marvellous, becaufe it falls on a red ground, produced by the red glafs, a; but why the interception of red light fhould produce a green colour, on a white or any other ground, is a phenomenon in Optics not eafily to be accounted for. (See page 106.) A mixture of blue and yellow makes a green; and the intermediate colour is always formed by the mixture of thofe that go before and
after it, in the prifmatic order, fo as to reduce the feven to three primitive colours. If ftrong white light be looked at through blue glafs it will appear green; as in holding up the glafs before a dull fky , \&cc. Black and white, mixt on a pallet, produce a dirty blue; and the blue fky has been fuppofed to be fo produced, by the eye mixing the white of the atmofphere with the blank fuppofed to exift above it. Now, as fhadows on a white wall are of a dubious blue; may not that colour be the refult of white light paffing through a blue medium? and the near approach of blue and green to one another, make one, fometimes, to be miftaken for the other?

7 th. If a fhilling be put in a tumbler half filled with water, and then inverted upon a white plate (the plate being firft inverted on the tumbler), a double deception will take place; the fhilling will appear on the furface of the water as a fliilling, but at the bottom like an half-crown piece:-making one fhilling into three fhillings and fixpence! How is this?-By the refractive power of the water, the eye in a proper pofition will fee the fhilling on the furface of the watè. But the tumbler itfelf (and the water in it) becomes a lens from its round figure, and magnifies the fhilling into an halfcrown piece.

(147)

LECTUREX.

ASTRONOMY.

SECTION I.

HAVING confidered the materials of which our globe is formed, it is in the next place requifite that we fhould confider it as a part of a fyftem; the ftudy and knowledge of that fyftem, with the ftarry heaven that furrounds it, conftitute the noble fcience of Aftronomy :-a fcience that has engaged the ftudy and admiration of the firft characters in all ages of the world; and is probably the earlieft that was cultivated by mankind. For in the firft ages of the world, when the bufinefs of the human race was to tend their flocks and herds, by night as well as by day, it is natural to fuppofe, when they had no other object to look at, they would turn their eyes towards heaven: and we accordingly find, in the remoteft ages, that a planet was known from a fixed far. But in thofe times the uninformed mind faw divine vengeance in an eclipfe; and deftruction in the tail of a comet: and priefts and empirics, availing themfelves of fo natural a fuperfition, contrived the fallacious and wicked impofitions of aftrology ; by which the credulous vulgar have been the dupes of impoftors, who pretended to foretel future events by the pofitions of the planets. Had a knowledge of
the regular and orderly motions of the heavenly bodies done nothing more for mankind than expofe and confute thefe delufions, and wean the enquiring mind from fuperfitious fears and uncertainties, humanity ought to have bowed to a telefcope, and made the pillar of a quadrant an altar whereon to facrifice its terrors and ignorance! But thefe illufions are happily done away by this enlightening fcience; and we can now look on comets and eclipfes with tranquillity.

In meafuring time (fo neceffary in all human affairs), we have no invariable ftandard but in the heavens. In chronology, the dates of fome of the remoteft events of antiquity are well afcertained by the eclipfes that happened about the time. But the moft important ufe of this fcience is, that of teaching the adventurous navigator how to find his way over a tracklefs ocean. So that we may fay, that the riches and comforts derived from trade and commerce are in a great degree owing to this fcience. By it alfo is afcertained the true figure of the earth; and the fituation, fhape, and extent of its continents and feas. But of all the means by which mankind have been led to a knowledge of the Deity, this fcience undoubtedly affords the moft confpicuous! A view of the creation through the eye of aftronomy, at once aftonifhes and overwhelms the mind! The grandeur of fuch a fpectacle, accompanied by an idea of that omnipotent Power, which made and governs the whole, exalts while it chaftens our faculties; infpires humility, while the underftanding is ftrengthened and enlarged; and finally leads us to a rational conception of the attributes and perfections of this great and good Being.

Before we launch out into that fpace which furrounds us on all
fides, it may be neceffary to take a furvey of this planet on which we live. Antiquity believed it to be a flat plane; and almoft in our own time, the church configned a Sage to prifon, for teaching that it was a globe. But the many voyages that have been made round it; have proved its globular figure beyond all doubt. This máy be eafily perceived without performing fuch a voyage; for when we firft fee a fhip at fea, her topmart alone appears, as if fticking out of the water; as fhe approaches nearer, we fee her upper fails; after a nearer approach, we fee her lower fails; and foon after, the hull itfelf. We fhould certainly have feen the whole at once, had fhe been approaching us on a plane; but it is evident that a bulging portion of the fea intervened, which hid her from our fight, until the came fo near us as to be on a comparative flat. The young aftronomer will have his conception affifted by infpecting fig. 1 , Plate XL. where the curve line $a b$ reprefents a portion of our globe's furface. The fhip a would be altogether hid from the fpectator c, except its topmaft, which would be feen along the line $d n$; when the fhip arrives at g, her lower fails would appear to the fpectator c, above the line $d s$; and when the comes to m, fhe would be entirely feen.

In like manner, when we fail from great capes, or headlands, we lofe fight of thofe eminences, firft at the bottom; then the middle difappears; and foon after the top: in approaching the land, the tops of the mountains firft appear; then the middle of them; and when very near, the flat fhore itfelf. Thefe appearances are univer-fal; and prove that we always fail upon a globular furface..

An eclipfe of the moon is occafioned by her paffage through the earth's fhadow; now this fhadow appears always circular on
the moon's face, whatever fide of the earth is turned towards her: fhewing, that it is not a flat round body that projects the fhadow, but a globe.

If we may be permitted to judge of this matter analogically (from that famenefs that runs through all nature), we can prove the fun, moon, planets, and fixed fars, all to be globes. Can we fee any reafon, why the Almighty fhould invert the general order and economy of the univerle, for this fpeck of earth on which we live, and which bears but an infignificant proportion to many of the bodies in our own fyftem?

A pendulum vibrating flower at the equator than in France, firft gave the hint, that the earth was not a perfect globe. But as heat expands metals, this might be fuppofed to occafion the difference. A rod of iron, thirty feet long, will not expand above one tenth of an inch in the hotteft fummer's day; but a pendulum rod of 39.2 inches, which vibrates feconds at London, muft be thortened one inch to vibrate feconds at the equator; therefore, gravity mult be lefs, or the centrifugal tendency more: the latter is the caufe; and it has been calculated that a body weighing 28 glb . at the pole, would weigh only 2881 b . at the equator. For the equatorial parts of the globe defcribe fo large a circle round the earth's axis every twentyfour hours, in comparifon of the parts nearer the poles, that the tendency to fly off not only diminifhes the weight of bodies there, but has made thofe parts fwell into a protuberance, that difiorts the fimple and beautiful figure of a globe, into that of an oblate fpheroid, or that of an orange or turnip. It was calculated by Newton, that this fwelling would increafe till the equatorial diameter flould be to the polar as 230 to 229 , when it would ftop,
and become a balance to the power of gravity. It fhould feem as if this muft have taken place when the materials of the earth were in a foft or pulpy ftate, and mixed together, ere land and water were defined or feparated. The fact, however, has been proved by actual menfuration, that the earth is about thirty-five miles in diameter from one fide of its equator to the other, more than it is from pole to pole. Here we have a wonderful fpecimen of human genius and invention! A pigmy of fix feet, undertakes to afcertain the true figure of a body 8244 miles in diameter! The places felected for this fingular meafurement, were under the equator in South America, and under the polar circle in Lapland. To give a general idea of it, we will fuppofe I want to know the diftance of a and b, fig. 3, Plate XL.; either upon a plot of ice, or on level ground. I meafure exactly a line that I make the bafe of a triangle; fuppofe that bafe to be $c d$. Stations muft now be fixed upon in the neighbourhood, within fight of one another, fuch as churches, tall trees, flags on the tops of the hills, as $a, c, b, \& c c$. With a quadrant or theodolite at d, the angle $a d c$ is taken *; and at c, the angle $a c d$ is taken. The angles, and one fide of a triangle, being known, the length of the other two fides will be found by a fimple procefs in plane trigonometry: having thus found the length of the line $a c, I$ make it a bafe of the new triangle $a c e$. Taking the angle e $a c$ at a, and the angle $a c e$ at c, l become poffeffed of the length of the line $a e$: this line I alfo make the. bafe of a new triangle, viz. a e b. By taking the angle at a, and. that at e, as before, I acquire the length of $a b$, the line fought. This may ferve to give a general idea, how inacceffible diftances. may be found, and how the mathematicians proceeded at Quito, and

[^21]in Lapland. But when a line is thus meafured on the meridian, or immediately north and fouth, how is this to afcertain the true figure of the earth?-Suppofe the diftance above found, to be an arch of the meridian $a b$, fig. 2, Plate XL. at the equator; and the $\operatorname{arch} c d$, the fane diftance, and bearing, at the polar circle. Now a plummet, if fufpended at a, would point to the centre of the earth c, and alfo to the fixed ftar g. The fame performed at b, would alfo point to e, and to the ffar m. Though we know nothing of the diftance of the fixed flars, we can eafily draw an imaginary circle through g and m, and know the number of degrees they are from each other. For all circles, great or fmall, real or imaginary, are fuppofed to be divided into 360 parts, called degrees. So we find, with a common quadrant, how many of thofe parts or degrees are contained between the fars g and m. This part of the furvey: being finithed, we proceed with the line and plummet at c and d in the fame manner, and find the line pointing to the fars i and k. Now, though the terreftrial diftance $a b$ is the fame as $c d$, the celeftial diftances $g \cdot m$ and $i k$ are very different, as may be obferved even by the eye. Does not this, at firft fight, prove the earth to be flattened at its poles, and protuberant at its equator? or, in other words, that the arch $a \dot{b}$ is a portion of a fimaller circle than $c d$, and of courfe that it will occupy a larger arch in the heavens? Thefe furveys being thus compared, it became eafy to eftimate how much the equatorial diameter exceeded the polar : which was about. 35 miles; the length firf calculated by Sir Ifaac Newtom.

This effect is well reprefented by two circular rings, flexible, and croffing each other, as fig. 4, Plate XL. ; thefe turning flowly by the handle a, will appear like a globe; but if turned fwiftly, they affiume the fwelling oblate figure of the earth.

But the young mind will naturally afk this queftion: If the earth be a globe, or any other figure like a globe, how can people ftand on all fides of it, and believe themfelves upon its top? When we firft begin to reflect upon the fubject, we are apt to carry our ideas downward, not only through the earth, but through all fpace: in refpect to face, however, there is neither top nor bottom in it; on the earth, the whole of its furface is its top, and its centre is its general bottom. Not that we conceive there is an attracting fomething there, which draws the materials of the carth toward it, and unites the whole in a denfe ball. In a former lecture, we have proved that the whole earth is the attracting body, and not any thing placed in its centre. If fig. 7, Plate XL. reprefent the earth, with inhabitants ftanding radiantly round it, the figure a will be the moft powerfully attracted towards his antipode c; becaufe there is the greateft mafs of the earth under his feet in that direction; and the figure c will be the moft powerfully attracted towards his antipode a, and he would therefore call that direction his downward. The figure d is attracted moft towards m; and the figure m moft towards d; fo that if a hole were made through the earth, and they were to fall down it at the fame inftant, they would meet at the centre o, where they would be fufpended between contending attractions, and lofe all further ideas of downward, being at the general bottom of every place refpecting the earth. If they purfued their journey towards their refpective antipodes, the reft muft be performed up-hill, or rather as if they were climbing up the fhaft of a mine. At firft, indeed, that difficulty would be inconfiderable; but it would increafe as they left a greater portion of the globe behind them, until they arrived at the furface, where it would be greateft of all: for gravity diminifhes from the furface of the earth, whether we go upwards or downwards. Is it not evident, therefore, that the whole furface of the earth muft be its general top,
and the bottom, to all parts of it, the centre? So vague are our ideas of upward and downward, that if the planet Jupiter were to approach our world fo near that his attraction (from his fuperior fize) was greater than that of the earth; in his approach, we fhould fee him over our heads, and begin to feel ourfelves lighter ; as he came nearer, we fhould begin to rife from the earth; prefently we fhould fall to that body we juft before had feen above us ; and then the earth itfelf would be over our heads !

It is equally incomprehenfible to the uninformed mind, how it is poffible that the earth fhould turn round its axis every twenty-four hours, and we not perceive it. This, like many other celeftial appearances, is fallacious. We fee the fun rife in the eaft, and fet in the weft. We truft the evidence of our eyes implicitly in near objects, and with difficulty diftruft them in thofe that are remote. But if the earth turns on it axis from weft to eaft, the fun, moon, and ftars, muft certainly appear to turn the contrary way, or from eaft to weft : therefore thofe bodies muft turn round us, or we muft turn round the earth's axis. Let us then enquire which of thefe is moft confiftent with that wifdom and fimplicity we fee in the other parts of creation. Mathematicians can certainly prove the fun to be above a million of times larger than the earth ; and nearly a hundred millions of miles diftant from it. Aftonifhing! Can common fenfe believe it poffible that this huge globe fhould revolve round the earth, to give it day and night, with a rapidity exceeding all imagination, when the earth by fimply turning round on its axis, would have all the benefit of fuch a revolution!-a common mechanic would be afhamed of fuch a machine. Nay, not only the fiun, but the whole heavenly hoft, muft make this rapid and unneceflary revolution, was it as it. appears to our eyes. We can fee the other worlds of our fyftem turn on their axes; and, from ana-
logy, might conceive that muft be the cafe with our earth. It is true we feel no jolts or obftacles, by which we generally judge of motion; for the earth flies through fpace like a balloon through the air ; where the aerronaut, infenfible to motion, transfers it to the towns over which he flies. If we were in the cabin of a fhip, when fhe turns with the tide, on fmooth water, and looking at fixed objects at a diffance, our eyes would tell us thofe objects were turning round us, and that we were at reft. So are we deceived in the motion of the earth : for turning on its axis from weft to eaft, the heavenly bodies muft appear as turning from the eaft towards the weft. We have proved that the air is held faft to the earth by the power of gravity ; and it muft therefore revolve with it; fo that if the medium in which we live be carried along with us, it will be impoffible for us to perceive the earth's motion, except by means. of diftant objects : and hence a bird is as effectually carried forward when on the wing as when at reft. So it is, that the eye deceives us in every celeftial motion.

Befides this diurnal motion, the earth has another, called its annual motion, which is a journey it performs round the fun in 365 days 5 hours 4^{8} minutes and 45 feconds. In this journey the feafons are produced by a contrivance, as the poet juftly efteems it,

"Sublimely fimple."

This was by inclining the earth's axis $23 \frac{1}{2}$ degrees from a perpendicular to the plane of its road, or the ecliptic, as is called; and by that axis continuing parallel to itfelf during this annual journey. By this beautiful contrivance, the northern and fouthern hemifpheres are brought alternately under the fun, and his blefings in a great.
meafure equally diftributed over the face of the whole carth. This parallelifin will be eafily underftood by infpecting fig. 8, Plate XL. where the line $n s$ is the pofition of the earth's axis for every month in the year. The earth being divided into two hemilpheres by its equator, $a b$, the northern one is addreffed to the fun in the month of June, and, of courfe, that half is in fummer. In December, juft the contrary takes place: the fouthern hemifphere becomes addreffed to the fun, and is in fummer; while the northern is turned from the fun, and confequently is in winter. At the equinoxes, in March and September, the fun is over the equator, and fhines to the north pole n, and to the fouth pole s : as thefe centres, therefore, are in the boundary between day and night, every circle on the globe will be cut equally by this boundary; and every fpot on the earth will defcribe one half of its diurnal revolution in the day, and the other half in night, and hence their equality at thofe times of the year. In April the fun will fhine a little over the north pole, as may be feen in the fig. 8, Plate XL.; the day-part of the circle will be thus increafed, and the night-part of it diminifhed. In May, he fhines more over the north pole, and the days increafe in length; but in June he fhines $23^{\frac{1}{2}}$ degrees over the north pole, fo that all places within that diffance of the pole have perpetual day; and the daypart of every place in the northern hemifphere, befides, has its longeft days, as may be feen by a mere infpection of the figure. In July, he does not fhine fo far over the pole ; in Auguft, lefs; and in September, he again fhines no farther than to both poles, and equality of day and night again takes place. The earth's axis ftill keeping nearly parallel to the line in which it fet out, the north pole now finks into the dark half of the earth, and will not be in fight of the fun again for half a year, i. e. till the fpring equinox : but fo much as the fun in October fhines fhort of the north pole,
fo much it will fhine over the fouth pole; in November, more; and in December, moft of all, or $23^{\frac{1}{2}}$ degrees: therefore it is now midfummer in the fouthern half of the globe, and midwinter to the northern half; as may be feen by an infpection of the figure. A fpectator on the earth in March, fees the fun in a conftellation of ftars called Aries $\begin{array}{r}\text {; in April, in Taurus 8.; May, Gemini } \quad \text {; } \\ \text {; }\end{array}$ June, Cancer $\simeq, 8 x c$. : fo that the fun is ufually faid to pafs through the twelve figns of the zodiac every year. The manner in which the fun enlightens the earth, the parallelifm of its axis, and the increafe of days and nights, may be naturally reprefented by a fmall terreftrial globe, hung by a ftring faftened to its north pole, fig. 1 , Plate XLI. A circle of wire, $a b$, reprefenting the plane of the earth's equator, may be held parallel to the table, and even with a candle ffanding upon it. If the fring be twifted a little towards the left hand, and the globe fufpended even with the wire at a, the globe will begin to turn on its axis from weft towards the eaft, and day and night will be ftrongly depicted on its furface by the candle. But if the globe be carried round the wire, to reprefent a year, the candle will illumine it to both poles, and every fpot on its furface will defcribe half a circle in the enlightened part, and half in the dark part, and make equality of day and night through the air. This is, however, not the cafe in nature; for the plane of the equator inclines $23 \frac{1}{2}$ degrees from the ecliptic, or plane of the earth's road round the fun: if then the wire be held with that inclination, as $a b c d$, and the globe be carried gently round it, the feafons, and ${ }^{*}$ increafe of day and night, will appear as they are in nature ; i. e. when the globe is at a, the candle enlightens it no farther northward then the arctic circle $n 0$; all within which, in the middle of our winter, is deprived of a fight of the fun; while all places within the antarctic, or oppofite circle, have perpetual day: at this
time the candle fhines vertically on the tropic of Capricorn. As the earth moves towards b (the vernal equinox), if a fmall patch be laid on latitude 50° north, it will fhew how the days increafe in England, and how the nights decreafe. When it has arrived at b, the candle will then be perpendicularly over the equator; and, fhining to both poles, equality of day and night will take place: as it proceeds towards c (the fummer folftice), the days increafe, and the candle fhines more and more over the north pole: when it has arrived at c, the whole arctic circle, and the countries it includes, will revolve in continual fight of the fun; and all within the antarctic circle will be deprived of that fight. At this time the candle fhines vertically on the tropic of Cancer. Moving from midfummer towards d (the autumnal equinox), the days will be found to decreafe, and the nights to increafe in length, till they come again to equality at d, and thence to the winter folftice, where we fet out.

Though we fay the inhabitants within the arctic and antarctic circles are at oppofite times of the year deprived of the fight of the fun, they are not altogether deprived of his light; for the atmofphere reflecting and refracting the fun's light (fee Optics), forms a twilight, that reaches 18° below the horizon, and which is reprefented by the light fhade, fig. 1, Plate XXXIV. Optics. Hence the day breaks to us when the fun is ftill 18° below the eaftern horizon, as at c; and we have his light in the evening till he finks 18° below the weftern, as at p. But as the fun rifes confiderably to the north of the eaft, and fets alfo to the north of the weft with us, he both rifes and fets fo obliquely to the horizon, that twilight is much longer to the northern and fouthern parts than to thofe about the equator, where he rifes and fets more perpendicularly.

Hence at midfummer Great Britain has no night ; for even at twelve 0^{\prime} clock at night, the whole ifland is within 18° of the horizon, or boundary of the fun's light.

It might be afked, How we know that the earth makes an amnual journey round the fun? Through the fhaft of a deep mine, we can fee the ftars in the day as well as night: through a telefcope, properly equipt and fituated, we alfo can fee them : of courfe we can fee the fun and ftars at the fame time. Now if the fun be feen near a fixed ftar to-day, he will be feen confiderably to the eaft of it in a few weeks; and if the obfervations be continued through the year, we fhall trace him round the heavens to the fame fixed ftar where we began to make the obfervation; proving, that he muft have made a journey round the earth in that time, or the earth round him. As thefe two bodies do mutually attract each other, and that in proportion to their quantities of matter, it follows, from the laws of motion, that the fmaller body muft make out by motion what it wants in matter, and of courfe the earth performs the journey. For if two balls of unequal fize were fixed on the two ends of a wire, fig. 5, Plate XL. and thrown up, fo as to turn round each other, a centre of gravity, a, would take place between them, round which they would move; the fmall one making out by its motion what it wanted in matter, and the large one making out by its matter what it wanted in motion: fo the two circles, b and c, would be to one another exactly as the quantities of matter in the two balls.

It may alfo be afked, How we know that the earth's axis keeps always nearly parallel to itfelf? This is alfo matter of fimple obfervation. Every one knows, that there is one ftar in the north which feems to be ftationary, while all the reft feem to turn round
it, as round a centre ; this is called the polar far, and the earth's axis continually points towards it. Now if a circle furn round a centre, that centre may be conceived as without motion; fo may the poles of our globe; and, of courfe, any body oppofite to the north pole muft appear to be fationary *.

But it may be faid, that the earth's axis does not point to the fame part of the heavens at the two equinoxes, or the two folftices. For if s be the polar ftar, fig. 6, Plate XL. and the earth's axis at a point to it, furely, if that axis keep always parallel to itfelf, it docs rot point to that far when it is at the equinoxes, or at b and c. Here we have an opportunity of contemplating the immenfe diffance of the fixed ftars, when we fee that the diffance $b c$, or the diameter of the earth's orbit (nearly 200 millions of miles), is not capable of affording any angle, or parallex, that the eye can perceive; nay, that it is but barely perceptible, affifted by the niceft inftruments! The ftar γ draconis, pafles vertically over London nearly every twenty-four hours, and may be feen through a ftraight chimney in the day; but when viewed by the zenith fector, it is feen nearly in the fame part of the field of the telefcope at the vernal as at the autumnal equinox ; becaufe the diameter of the earth's orbit bears fo. infignificant a proportion to the diftance of the fixed ftars.

[^22]Of the Celeftial Globe.-This globe is intended to reprefent the face of the heavens, as the other is that of the earth. The eye muft conceive itfelf in the centre of this globe, and looking towards its concave furface, as we look to the concave arch of the heavens. Thus fituated, and the globe rectified, if a fmall hole was made through each far, the eye would fee through that hole the very ftar in the heavens which that fpot was made to reprefent: fo exactly are the bearings and apparent diffance of the fixed ftars on the furface of this ideal concave reprefented on this globe! Aftronomy is faid to have originated with the Chaldeans and Egyptians, people famous for their hieroglyphics and allegories. The conftellations, or figures, on this globe, are of this kind ; and no doubt had a reference to the myfteries of their religion, and the operations and appearances of nature. The heavens were an eternal book, open to all mankind, and therefore fit to regifter ideas which they conceived to be moft momentous. The Greeks were fmitten with the grandeur of the conception; and crowded in feveral conftellations that have an immediate reference to their fable. Modern aftronomy has thought fit to continue thefe figures; as they afford an outline, or contour, that inclofes, as it were, a portion of the heavens: and by ufing the Greek alphabet in each conftellation, every ftar has a fpecific name that diftinguifhes it from all others: fo that if a comet, or any ftrange appearance, occurred, thefe figures would afford the means of pointing it out, even to a correfpondent in China. The largeft apparent ftar in each conftellation has the firf letter of the Greek alphabet placed near it; the fecond in magnitude the next, and fo on. So, Aldebaran would be called ${ }_{\alpha}$ Tauri ; Arcturus, ${ }_{\alpha}$ Bootis; the far paffing vertically over London, γ Draconis; and Pollux, β Geminorum, \&ic. Thus the ftars may be fpoken of as if each had a feparate name. But many
ftars having been difcovered fince thefe names took place, and becaufe a ftar, which had one letter appropriated to it, was found to have feveral fmaller ftars near it, this method has been further enlarged by adding the ordinal numbers, $1,2,3, \& \mathrm{c}$. to thefe neighbouring fars, as may be feen in the monthly occurrences of the Nautical Almanack.

Aftronomers alfo divide the heavens into three regions-the northern, the fouthern, and the zodiac. In the following table is contained the number of vifible ftars in each conftellation, their magnitudes, and thofe felected for nautical obfervations.

Names of conftellations, and the number of ftars in each, according to Hevelius and Flamftead.

Ancient Constellations. Hevelius. Flamftead.

Urfa Minor	-	Little Be	r	-	-	12	-	24
Urfa Major	-	Great Be	ar	-	-	73	-	87
Draco -	-	Dragon	- -	-	-	40	-	80
Cepheus	-	Cepheus	- -	-	-	51	-	35
Bootes	-	- -	-	-	-	52	-	54
Corona Borealis		Northern	Crown	-	-	8	-	21
Hercules -	-	- -	- -	-	-	45	-	113
Lyra	-	Harp	-	-	-	17	-	21
Cygnus -	-	Swan	-	-	-	47	-	81
Caffiopeia	-	Lady in a	Chair	-	-	37	-	55
Perfeus	-	- -	- -	-	-	46	-	59
Auriga	-	Waggone	-	-	-	40	-	66
Ophiuchus	-	Scrpentari	us	-	-	40	-	74
Serpens	-	Scrpent	-	-	-	22	-	64
Sagita	-	Arrow	- -	-	-	5	-	18
Aquila -	-	Eagle	- -	-	-	$23\}$		
Antinous	-	- -	- -	-	-	195		71
Delphinus	-	Dolphin	-	-	-	14		18
Equulus -	-	Horfes-he	ad	-	-	6	-	10
Pegafus	-	Flying-hor	fe	-	-	38	-	89
Andromeda	-	- -	- -	-	-	47	-	66
Triangulum	-	Triangle	-	-	-	12	-	16

Hevelius. Flamftead.

New Southern conftellations.

Hevelius's conffellations, made out of the unformed ftars.

					Hevelius.		Flamftead.
Lynx	- - -	-			19	-	44
Leo Minor	Little Lion	-				-	53
Afterion and Chara	Greyhounds	-			23		25
Cerberus	-	-	-	-	4	-	
Vulpicula and Afner	Fox and Goofe	-			27		35
Scutum Sobiefki	Sobiefki's Shield		-		7		
Lacerta -	Lizard -	-	-	-	10	-	16
Camelopardalis	Camelopard	-	-	-	32	-	58
Monocerus	Unicorn ${ }^{\text {' }}$	-	-		19	-	31
Sextans -	Sextant	-	-	-	II	-	41

Many other vacancies in the heavens have been filled up with fcientific conftellations, viz. an air-pump, a clock, a telefcope, a microfcope, a fquare, a compafs, an eafel, gravers, a chemical furnace, thop of the fculptor, \&c. The crofs is a confpicuous conftellation in the fouthern hemifphere. The bull of Poniatowifki, the fceptre of Brandenburgh, and the harp, are alfo new ; but the fars in all thefe have been enumerated in the old conftellations, except thofe too far to the fouth to be feen by northern obfervers.

The number and order of the fars, capable of being feen by the naked eye, are,

There are nine confpicuous fars, near the ecliptic, and the moon's orbit, that are felected as proper flations to calculate the
moon's diftance from, both as fhe approaches towards them, and as fhe recedes from them ; by which tables, in the Nautical Ephemeris, the longitude is found at fea. Thefe flars are, a Arietis, Aldebaran, Pollux, Regulus, Spica, Antares, a Aquilæ, Fomalhaut, and \propto Pegafi. Thele ftars are fo near the moon's path, that her diftance from one or other of them is calculated for every three hours of time, for many years to come. Let $a b$, fig. 8, Plate XLIX. reprefent the ecliptic ; then may thofe nine fars be eafily diftinguifhed in the heavens, by their fuperior brightnefs, and their proportional diftances and bearings, as in the figure.

To the young aftronomer, it muft appear a little ftrange, why the zodiacal conftellations and their fymbols fhould not be together. The ftars, for inftance, that compofe the ram, or Aries, are nearly 40° to the eaft of the firft point of Aries, or where the equator cuts the plane of the ecliptic, marked r; and the bull about the fame diftance from its fymbol $»$; and fo of the whole twelve figns, as they are called, of the zodiac. As the protuberance that furrounds the equatorial part of the earth, lies at all times obliquely to the fun's attraction, except at the equinoxes, that part will be liable to a more powerful attraction than any other part of the earth; by which the equatorial obliquity is drawn more and more towards a level, at the rate of about half a fecond per year.

But I conceive the fun's attraction of the earth to be balanced by the repulfion of his light, at their medium diftance ; and, therefore, that the fouthern hemifphere, s, fig. 4, Plate XLI. will be more repelled at our winter folftice, than the northern hemifphere, n, at the fummer folftice ; as the earth, at that time, is above its
medium diffance from the fun, as in winter it is within it. Hence the unequal repulfion againft the two hemifpheres, and the tendency which the fun's attraction has to draw the equatorial protuberance out of its oblique fate into a more parallel one, has altered the inclination of the earth's axis, fo that it is one third of a degree more perpendicular to the plane of the ecliptic than it was in the days of Ptolemy : in his time it inclined $23^{\circ} 4^{\prime} 45^{\prime \prime}$ from that perpendicular; in our time, $23^{\circ} 27^{\prime} 5^{6^{\prime \prime}}$. (See Lecture Firft.) Hence r changes its place backward (or contrary to the order of the figns) $50^{\prime \prime}$ every year, and the plane of the earth's equator croffes the ecliptic 20^{\prime} in time fooner every year : therefore, the equinoctial point r goes back in the ecliptic one degree in 72 years, and occafions the difagreement of the zodiacal conftellations, with the fymbols that reprefent them. This makes a fenfible difference in the latitude and longitude of the ftars; and it becomes neceffary to revife celeftial globes and atlafes every 72 years. The figns of the zodiac are fymbolical of the feafons. The fun is feen in the Ram and Buli in the fructifying feafon of fpring. The crab is faid to crawl backward; and the fun begins to withdraw from us when he paffes through Cancer. He is feen in Leo in the dog days; the fiercenefs of his rays is reprefented by a lion. Virgo has an ear of wheat in her hand, as an emblem of harveft: and the Balance beautifully reprefents the medium between the heat of fuminer, and cold of winter ; of long and fhort days, \&cc. \&c. Thofe figns are numbered in this fingular way:

Aries	r	- fign.	Libra	\bumpeq	6th fign.
'Taurus	४	Ift.	Scorpio	m	7 th.
Gemini	II	2 d .	Sagittarius	1	8th.
Cancer	0	3 d .	Capricornus	\%	9th.
L.eo	Ω	4 th.	Aquarius	$\stackrel{\sim}{0}$	10 th.
Tirgo	次	5 th.	Pifces	3	1xth.

Each of thefe figns is divided into 30°, and each degree into 30 minutes, and each minute into 30 feconds: fo that the fituation of the fun, on the 10th of May, would be faid to be in $1 \mathrm{~S} .20^{\circ} 0^{\prime}$, or the 20th degree of the firft fign. Jupiter in $33^{s .} 23^{\circ} 9^{\prime} 12^{\prime \prime}$, would be read that Jupiter was in the $23^{\circ} 9^{\prime} 12^{\prime \prime}$ of the 3 d fign, \&c.

The ecliptic being the path in which the earth travels through the heavens, it neceffarily becomes the moft important line on the celeftial globe: longitude is counted upon it, from the firft point of r; and latitude is counted from it, north or fouth. It is in the middle of a zone, or belt, of 16° wide, called the zodiac, and which includes the latitudes of all the planets: beyond this limit, north or fouth, the moon or any of the planets never move. The moon never departs from the ecliptic further than $5^{\circ} 20^{\prime}$, nor Mercury more than 7°. The ecliptic is croffed by four lines, at the four cardinal points of the heavens: thofe in the equinoctial points are called equinoctial colures; and thofe paffing through the parts where the ecliptic touches the tropics, the folfitial colures. It is alfo croffed by meridians, which all meet at the two poles of the ecliptic. On thefe meridians is counted the latitude of the fixed ftars, which is their diftance from the neareft part of the ecliptic ; and what that part is diftant from the firft point of r, is called their longitude.

The declination of a ftar, is its diftance from the celeftial equator. The latitude, therefore, of Arcturus, is 31° north ; its longitude, 202°; and its declination, 20° north.

The right afcenfion of the heavenly bodies is their diftance from the firft point of r, eftimated in time on the equator. The earth turns 15° of a circle every hour, therefore the meridians are placed
15° from each other, for the eafy counting of time; and hence the equator is divided into 24 , hours. If a globe be made into a direct fphere, by bringing its poles into the horizon, and a far be brouglit to the eaftern horizon, the place where the equator is cut by it will fhew the right afcenfion in time. Thus the right afcenfion of Arcturus is fourteen hours and five minutes.

Oblique afcenfion of a ftar is an arc of the equator, reaching, according to the order of the figns, from r to that point of the equator that rifes with the ftar, in an oblique fphere : and the difference between the right and oblique afcenfion of a ftar is called its afcenfional difference.

Time is meafured by the apparent motion of the fun round the earth, and round the heavens: the time from his leaving any particular meridian, till his return to it again, is divided into 24 hours, and called a day; and the time from his leaving any fixed far, till his return to it again, is a year. The civil day is reckoned from midnight to midnight; but the aftronomical day begins 12 hours later, and is from noon to noon, or the interval between two fucceffive tranfits of the fun over the fame meridian. This day is not divided into two twelves, as the civil day; but goes on from one to twenty-four uninterruptedly ; fo that 18 hours of aftronomical time would be 6 next day. But though the fun feems to go round the earth in 24 hours, the fars feem to go round it in $23^{\mathrm{h}} 56^{\mathrm{m}} 4^{\mathrm{s}}$; fo that they gain $3^{\mathrm{m}} 56^{\text {s }}$ upon the fun every day, which amounts to one day in one year. This arifes from the annual motion of the earth round the fun; which makes him appear to gift forward through the figns, nearly a degree every day; and therefore if a ftar was on the meridian with him to-day, I fhould find
him nearly a degree to the eaft of it to-morrow, and my meridian would crofs the far nearly four minutes fooner than it wrould crofs the fun: the firft of thefe is called a fidereal day ; the latter, a folar day. Fig. 3, Plate XLII. will render this famiiiar. S, is the fun : 1 , is the earth, in a pofition where the fun and the ftar d would both crofs the meridian $a c$ at the fame time ; but when the earth has arrived at pofition 2 , it will be feen that the meridian, $a c$, will come to the ftar d fooner than to the fun, by the diftance $o c$: when the earth comes to 3 , the difference will be ftill greater ; and when it arrives at 4 , there will be a quarter of a circle difference, as from 0 to c, or a quarter of 24 hours, i. e. the ftar will crofs the meridian fix hours before the fun. At this place, it may feem as if the plane of the meridian, $a c$, did not point to the far d : this arifes from the immenfe diftance of the fixed fars; in comparifon of which, the whole diameter of the earth's orbit may be confidered merely as a point. At 5 , the diftance $0 c$ continues to increafe; and at 7 , the ftar would be on the meridian 12 hours before the fuil. This increafe continues till the earth arrives at 1 , where it fet out; fo that the fidercal year would contain one day more than the civil year. For if the fun and ftar were on the meridian at twelve o'clock, at No. 1, the ftar at No. 2, would crofs it at ten ; at No. 3, at eight; at No. 4, at fix, \&cc. \&cc. \&cc.: fo it is found, that the earth travels round the fun, from any fixed ftar, to that ftar again, in $3^{6} 5^{d} 6^{n} 9^{m} 14^{3} \cdot 5$. But this fidereal year differs from the tropical year (on account of the preceffion of the equinoxes) $20^{\circ} 29^{\circ}$: for the time that the fun is in paffing from either of the folftitial or equinoctial colures to the fame point again, is $365^{\mathrm{d}} 5^{\mathrm{h}} 4.8^{\mathrm{m}} 45^{5} 5^{\mathrm{lhs}}$. The civil year, therefore, confifting of $365^{\mathrm{d}} 6^{\mathrm{h}}$, is nearly a medium between the fidereal and tropical years.

It is found, that a well-going clock and a fun-dial do not go together; but that the fun is fometimes fafter than the clock, and fometimes flower. There are two caufes to produce this effect; ff , the obliquity of the equator to the plane of the ecliptic ; and 2dly, the oval orbit of the earth, which makes it farther from the fun at one part of the year than another. Let $r \varsigma \bumpeq$, and r, fig. 1 , Plate XLII. reprefent the ecliptic ; and $r \bumpeq$, the equator: and let us fuppofe the fun moving in the ecliptic from r to c; while a far, or another fun, moves from r to d; and that the earth moved within this fphere of celeftial meridians, $x r z \bumpeq$. Now, as the fun moves obliquely in the ecliptic, and the far directly in the equator, a meridian of the earth, $n m$, would cut the point c, before the point d; though they are equally diftant from the point r, from whence the fun and ftar fet out; fo that, as the ftar reprefents the clock, it is evident the folar noon would be before that of the clock: at $d s$ the obliquity would be fill greater ; but at so $n s$, the folfice, the quadrants coincide, the fun and far are in the meridian, and cut it at the fame time. In the quadrant between Ω, it is cqually evident the meridian $t y$ would come to the ftar f fooner than to the fun t; fo that the clock would be before the fun from midfummer to the autumnal equinox, when they would again be together. From \bumpeq to vs the fun would be before the clock; and from is to r the clock before the fun.

Thefe differences may be familiarly feen on a celeftial globe; where, if a forefinger nail be placed 15° from r on the ecliptic, and another 15° from r on the equator, and the globe turned, that on the ecliptic will arrive at the meridian before the other, though their diffances are the fame. Any other two equal diftances on
the ecliptic and equator will meet the meridian exactly agrecable to what has been faid on fig. 1, Plate XLII.

But the inequality of the fun and clock does not altogether arife from the obliquity of the ecliptic. The fun himfelf is not equal in his motion all the year. (Aftronomers commonly fpeak of the fun as if he had motion ; but it is the motion of the earth that fhould be underftood.) The orbit of the earth is an ellipfis, and the fun may be confidered as fixt in one of the foci of it. To make an ellipfe mechanically, we ftick two pins in a table, and tying the two ends of a thread together, lay it over the pins ; then ftretching it round them with a pen, or pencil, an ellipfe will be made, and the place of the pins will be the foci ; and S, fig. 2 , Plate XLII. will thus be the centre of the fun. When the earth is at a, its neareft diftance from the fun, the fun is then faid to be in peribelion; and when at b, its greateft diftance, the fun is in apbetion. Now, as it defcribes equal areas in equal times, and the fpace $c \mathrm{~S} d$ is equal to the fpace $e \mathrm{~S} g$, it follows, that the earth will move from c to d in the fame time it would move from g to e (when at its greateft diftance, and partaking of the fun's attraction fo much lefs). Let us fuppofe that it travels from c to d in one day; then would the meridian m defcribe the cycloid $m n$ in that time. But the ftar s, being on the meridian with the fun, when we fet out from c, would become parallel, and point to s when it came into the directions $q r$; for $q r$ is parallel to $m o$: therefore the earth muft turn from q, the end of the fidereal day, to n, the end of the folar day ; and the arch $q n$ would fhew the difference of their lengths to be much greater than at the oppofite time of the year. Call the diftance $g e$ one day's journey when the fun is in apogee, or middle of fummer, and the ftar x on the meridian with the fun S ; then would the meridian
\approx defcribe in face the cycloid $z p$ in one folar day: but that meridian would cut the ftar x before it came to p; for the meridian $w u$ is parallel to $\approx x$. But here it muft be obferved, how much fmaller the arch $u p$ is than $n q$; and, of courfe, how much nearer folar and fidereal time approach to each other in fummer than in winter. But if folar and fidereal time could be reduced to cqual time, all the celeftial motions, and all duration, would be reduced to one fandard. This is an object of fuch importance in aftronomical computations and obfervations, that it is calculated for every day through the year, and for many years to come, in every ephemeris of coniequence in Europe. The theory of this reduction may be underftood by the diagram, fig. 4, Plate XLII. A B C.D reprefent the ecliptic or orbit of the earth; or, which is the fame thing, that through which the fun feems to pafs in one year. Therefore the earth is placed at E, and the fun in apogee at A, as he is a few days after he has paffed the folftice at $\Xi^{\text {s. }}$. The ball, or ftar, a, is to be fuppofed moving round the circle in which it is placed with a perfectly equal motion. The fun and this ftar are at prefent together ; but as the fun is in that part of the orbit where his motion is the floweft, the ftar will leave him, and arrive at b, at the time the fun is only at H . But as the fun's motion is now accelerated, he will overtake the far at C , and pafs it before he arrives at K ; for he is now in perigee, and moves fo fwift as to perform that half of his annual journey from \bumpeq to r in eight days lefs time than the half from r to \bumpeq. Hence the reafon why our fummer half-year is eight days longer than the winter half-year. The conjugate, or longer, diameter of the elliptic orbit A E C is called the line of the apfides*; and fo far as the fun has departed from A, his

[^23]apogee is called his mean anomaly (or inequality at any intermediate diftance between the two points), whether it is at H , or B , or C , or D, \&cc. So if he were at $z, 130^{\circ}$ from his apogee at A, he would be faid to be four figns and ten degrees from it, which is his mean anomaly; or if he were at $y, 310^{\circ}$ from the apogee, his mean anomaly would be fet down as ten figns and ten degrees. Hence it appears, that when the fun's anomaly is lefs than fix figns, the fun will be before the clock, which is reprefented by the equalmoving ball, or ftar, a and b; and when the fun's anomaly is more than fix figns, the clock noon will precede the folar noon; and they will be together at the apogee A and perigee C. By the unequal motion of the fun, we find there are but two parts of the year in which the fun and an equal time-keeper can be together ; but by the obliquity of the ecliptic, there were four times in the year when the fun and clock would be together : the real equation of time muft, therefore, be compounded from thefe two caufes of inequality : and what adds to the difficulty of the calculation is, that the line of apfides does not coincide with the line of the folfices; i. e. the apogee is nine degrees from it, viz. in the ninth degree of Cancer ; and the perigee in the ninth degree of Capricorn.

The equation of time being calculated for every day in the year in the Nautical Almanack, and Connoifance de Temps; and placed alfo on the horizon of common globes for the fecond year after leapyear ; a table here would be fuperfluous.

Reafon of the Biffextile or Leap-year.-It is natural to fuppofe, that in the early ages of the world the length of the year muft be very imperfectly laid down : the firft attempt, that had any pretenfions to accuracy, was made by Julius Cæfar, who fixed its length
at $3^{6} 5^{4} 6^{n}$: this was too much; for as the real time that the fun goes from a tropic to that tropic again is $365^{11} 5^{\mathrm{h}} 48^{\mathrm{m}} 48^{\mathrm{s}}$, there would be $11^{\mathrm{m}} 15^{5}$ overplus every year. In 1800 years this amounted to eleven days, which, in England, was taken out of the month of September, in the year 1752. A fimilar reform had taken place in moft parts of Europe, under the aufpices of Pope Gregory, in the year 1582. Our civil year of $365^{4} 6^{4}$ is fill wrong; but, for the fake of eafy reckoning, we call it no more than $3_{5} 6_{5}$ days; and letting the fix hours accumulate for four years, add one day at that time to the end of February, which brings all tolerably ftraight again. Suppofe the earth touched the tropic at a, fig. 1, Plate XLIII. and the year begun at that time; and fuppofe that in 365 days the earth had come fhort of the place where it fet out, and got no farther than b; at b the next year commences: but the earth cannot get round its orbit to b again in 365 days; fuppofe no further than c; at c, then, the next year commences, and will end at d. Is it not evident, by fuch reckoning, we fhould, in time, have fnow in June, and rofes at Chriftmas? But the fix hours fo loft every year, in four years amount to a day; which, being added to the end of February, brings d back to a, and the year commences pretty near its right place.

(175)

L E C T U R E XI.

ON THE MOON.

AS the moon is our own particular fatellite, we are more interefted in the knowledge of her character and properties, than of any: other of the heavenly bodies, except the fun and our own planet. We do not confider this luminary as a primary planet; fhe is a mere fatellite, or an attendant on the earth; fhining by no light of her own, but borrowing her light from the fun, fhe reflects a portion of it to us, as any polifhed body would the light of a candle. Not that fhe is a polifhed body, for with the moft ordinary telefcope we can fee her face covered with more inequality than our earth;-long ranges of mountains, and numberlefs round pits that. look like the craters of extinguifhed volcanos. With the naked eye we can fee dark and light fhades upon her, and which, through a telefcope, look like land and water; for land will reflcat the light of the fun much more than water; and the aeronauts, when high in our atmofphere, obferved that our fea appeared more black and dark than the land.

The anomalies of this fatellite, arifing from the action of the eartls and the fun upon her, conftitute the moft difficult problems in.
the fcience of aftronomy: the motion of the nodes, contrary to the circuit in wuhich fhe revolves; the motion of her elliptic orbit in refpect to its apogee and perigee, in a contrary direction to the nodes; her varied and complex velocities in different parts of her orbit, and at different parts of the year; her face being always towards the earth, and other minute irregularities, prefent a perplexity and difficulty of calculation, that almoft require ages of obfervation and calculation to afcertain the true phenomena of her motions.

A body borrowing its light from another, can only be enlightened on one fide at a time; therefore, as the moon revolves round our earth in about twenty-nine days and a half, fhe muft fhew us fometimes more, and fometimes lefs, of her light fide in that journey; and hence the phafes, or different appearances, fhe affumes in one lunation. Let S, fig. 2, Plate XLIV. reprefent the fun; m, the moon ; and E , the earth. In this fituation the moon will have her dark fide turned towards the earth; and, if fhe can be feen, fhe will appear of a faint greyifh colour, and ill defined, as a. This fituation is called the change of the moon. Proceeding towards n, fhe becomes a crefcent, and is called the new moon ; for a fpectator, u, after feeing the fun fet beneath the weftern horizon, u, w, would fee the moon a little above it ; and peeping under her, as it were, would fee a little flip of the enlightened fide, as at b. Proceeding on her monthly journey eaftward, we now fee her at her firft quarter, and a half-moon, as fhe appears at c : for now the is almoft at the meridian when the fun fets at u w. As the moon frequently rifes and fets in the courfe of a fingle night, this might appear like a real motion. But no: it is the motion of the earth on its axis from weft to eaft, that makes her appear to move from the eaft towards the weft; her real motion is from the weft towards the
eaft (the fame way the earth turns on its axis), fo that if we fee her near any particular fixed ftar to-night, we fhall fee her about thirteen degrees to the eaft of that ftar the next night, and fo ons' A few days after her firft quarter, we fhall find her at 1 : the fpectator at u now looks at her almof in the fame direction as the fun, when he fets; and, therefore, fees the greateft part of her enlightened face gibbous, or approaching to a circle. Almoft fifteen days after her change, we find her at the full at q : now when the fun fets in the weft at w, the rifes in the eaft at e, and has performed half of her monthly circuit round the earth. A few days after this fhe arrives at r, and becomes gibbous again, diminifhing from her circle; for now a portion of her dark fide appears oppofite the fun: and at s fhe is again a half-moon, and is faid to be at her third quarter. In this fituation, when the fun fets, fhe is on the other fide of the carth to the fectator u; fo that the earth muft turn from u to z before the fpectator can fee the moon rife, which will be about twelve or one in the morning. When flie arrives at t, a confiderable portion of her dark fide is turned towards the earth, and but a fmall part of her enlightened fide can be feen, as at b; for now the rifes but a little before the fun, and is again a crefcent, but with the thick part of it turned to the eaft, as it was to the weft when fhe was a new moon. In a few days after this, fhe again meets the orient fun, and difappears.

This is her ordinary monthly appearance, which may be naturally imitated by walking round a white ball when the fun fhines upon it; thofe phafes will then appear on the ball, as in nature.

Lunar Eclipfes.-If the moon moved round the earth, on a level with the ecliptic, or, in other words, in the plane of the earth's road.
round the fun, fhe would eclipfe the fun every time fhe came to the change; and be herfelf eclipfed every time fhe comes to the full : for an eclipfe of the fun is occafioned by the dark body of the moon paffing between the earth and the fun; and a lunar eclipfe by the moon paffing through the fhadow of the earth, and thereby lofing her borrowed light. But the moon moves in an orbit that is oblique to that of the earth ; one half of it being on the north fide of the ecliptic, and the other on the fouth; fo that it croffes the eartl's road in two points, which are called her nodes, making with it an angle of $5^{\circ} 18^{\prime}$: fee fig. 5 , Plate XLIII.; where $n m$ is the ecliptic, and $c d$ the moon's orbit; a the afcending node (generally marked 8), where fhe rifes to the north, and b the defcending node (generally marked 8), where fhe paffes to the fouth, of the ecliptic.

Now, though this orbit is a track lefs path, that has no more fubftantial exiftence than the circle I make in the air with my hand, it performs a regular circuit round the zodiac retrograde, or contrary to the order of the figns, every eighteen years and 22_{5} days; i. e. the node, or interfection, a, will in a year be removed to e, and the oppofite node to f. In another year the afcending node will have gone back to z, while the defcending node will cut y, \&ic. Hence when the moon is in the upper part of her orbit, c, fhe would be feen from the earth above the fun, and when in the lower part, d, below him : fo that an eclipfe could not happen but when the nodes lie in a line, or nearly fo, with the fun and earth; as $a b$, fig. 3, Plate XLIII. This figure reprefents both a folar and lunar eclipfe: at c the moon cclipfes the fun; and a fecetator on the earth at e would, for a few minutes, have the whole difk of the fum covered by the moon, For though the moon is a point in comparifon of the fun, her nearnefs to us makes her commonly fubtend
as great an angle in the cye; and fhe therefore appears as large. But as her orbit is an ellipfe, as well as that of the earth, and as its line of apfides is continually going forward in the order of the figns, fo as to make a circuit round the zodiac in nine years, fhe fometimes eclipfes the fun when the is in apogee, and fometimes in perigee, and fometimes at her mean diftance.

To give a clearer idea of the motion of the nodes and apfides, let fig. 1, Plate XLVI. reprefent the earth and the moon's orbit; E the earth, B the moon's orbit ; then will $1,2,3,4,5,6,8 \mathrm{sc}$. fhew the places of the moon's nodes for the nineteen years that they are in making a circuit round the ecliptic, and in a contrary direction to the motion of the moon, which is from weft to eaft, while the nodes move from eaft to weft. The motion of the apfides (or the moon's apogee as it is often called) is in the fame direction as the motion of the moon, viz. from weft to eaft; and the nine years in which it performs its circuit round the heavens is reprefented by thofe fpots marked a, b, c, $d, c, \& c c$. The twelve divifions marked $r, z, m, \& c$. are the twelve figns of the zodiac. The direction of the nodes, apfides, and figns, are denoted by the alphabetical direction of the letters, and the progreffive direction of the figures. Thefe motions are inge-nioufly reprefented by a machine invented by Mr. Fergufon, called his Paradox.

She is in perigee, fig. 3, Plate XLIII. at c, where her central fhadow reaches the earth: but were fhe in ajpogee, and farther from the earth, her central fladow would not reach it; her difk would appear lefs than that of the fun, and, of courfe, a ring of his light would, to the fpectator at c, appear round the dark body of the moon, and the eclipfe would be called annular, from being like a
ring. It is evident that the fhadow of the moon on the earth would cover but a fimall part of it, fo that folar eclipfes are very local, and fhort in duration ; for the fladow paffes like that of a cloud over the earth, at the rate of 2000 miles an hour ; but lunar eclipfes may be feen by a whole hemifphere at once.

When the moon therefore changes at her leaft diftance from the earth, her dark fhadow covers but a fpot on the earth of about 170 miles broad, if the time be about noon; but much more if the time be in the morning or evening, from the fhadow falling obliquely on the earth. To all who are within this fpot the fun will appear totally eclipfed for about five minutes, but to no place without it, although he will be partially eclipfed for feveral hundred miles round, as may be feen by a perfon fituated at n, fig, 6, Plate XLIII, who would fee three digits of the fun eclipfed along the line $n \mathrm{~m}$.

When the moon changes at her mean diftance from the earth, the point of her fhadow but juft reaches it, as q, fig. 6 , Plate XLIII.; and to the places where the fhadow paffes fucceffively over, the fun will be totally eclipfed only for an inftant of time.

When the moon changes in apogee, or at her greateft diftance from the earth, fle appears like a black patch on his face, and his radiance furrounds her like a ring, and therefore the eclipfe is called annular.

Frequently a fortnight after a folar eclipfe, we have a lunar one, if the line of the nodes, $a b$, be not removed out of the earth's fhadow in that time. The moon firft dips into the penumbral fhadow at $\%$, and continues very vifible, till fhe arrives at the cen-
tral fhadow, when fhe affumes a copper colour, and is almoft invifible; fhe then enters the other fide of the penumbral fhadow, and makes her exit at n, being about three hours in the whole paffage. It might be fuppofed when the was in the middle of the flhadow, and divefted of her borrowed light, the muft be invifible. This is not the cafe ; for the earth's atmofphere will refract, or bend, the rays inward that pafs through it, at r and q, fo much into the earth's fhadow, as to throw a few on the moon in the direction $r f$ and $q f$, and render her ftill vifible.

There is alfo a penumbra in a folar eclipfe as well as the central fladow, reprefented by the light fhade round the conical one, fig. 20, Plate XLIII. which gives a ftriking proof how very large the fun is in comparifon of the earth. The dark fhade $n 0$ is the track made by the central fhadow over the earth; fo that after the fhadow has paffed from n to q, a fpectator at n would fee the moon leaving the fun along the fpotted line $n \mathrm{~m}$ (while the fpectator at q would obferve a total eclipfe). If he were nearer the centre of the penumbra, he would have more of the fun's face cut off by the moon. So that, the diameter of the fun (in every direction) is fuppofed to be divided into twelve digits, as may be feen by the line $\approx q$, and three digits are eclipfed to the fpectator n, on the fun's difk; and if the eclipfe ended at q, would be faid to end 90° from a line paffing perpendicularly through the fun's centre. Solar eclipfes bagin and end well defined as to time; but the earth's fhadow is fo faint, that it is difficult, even with a good telefcope, to afcertain the time when an eclipfe of the moon begins or ends.

When the moon at full is a little diffance from the node, fhe may yet fuffer a total eclipfe; becaufe the earth's hadow is fo much
more in dianeter than the. Let $a b$, fig. 1 , Plate XLIV. be the plane of the coliptic, in fome part of which the earth's fhadow will always be. Let a fection of that thadow be c, d, and e; and let $r s$ be a part of the moon's orbit. If the moon is full at c, the will pafs through the upper part of the fladow, and be but partialiy eclipfed. But when fhe is full in the node, as at d, that node muft be in the middle of the hadow, and the will pafs directly through it, and be totally eclipfed. So when the fhadow is beyond the node, as at e, and the moon is at full there, fhe will pafs through the lower part of the thadow, and be only partially eclipfed. But when the is at full at \approx, the would fteer clear of the fhadow, and not be eclipfed at all. This thews the limits of eclipfes to be only near the node; and, by obfervation, it is found that a folar eclipfe camnot happen at a greater diftance from the node than eighteen degrees; nor a lunar eclipfe at a greater diftance than twelve degrees. An eclipfe of the moon always begins on her eaftern fide, and goes off on her weftern ; that of the fun on the weft, and ends on the eaft fide, to an European obferver.

As folar and lumar eclipfes can only happen at the change and full of the moon ; and as the nodes go backward at the rate of 19° a-year; which, together with the annual change in the moon's apfides, render the exact calculation of eclipfes a difficult problem; yet a tolerable guefs may be thus formed. The above $19^{\circ} \frac{1}{2}$ anfwer pretty nearly to 19 days of the fun's motion; the half of which being taken from half a year (viz. $9_{\frac{1}{2}}$ from $182 \frac{1}{2}$ days), leaves 173 days, the time of the fun's conjunction with one node, to the time he will be in conjunction with the other. Now, as degrees of the fun's motion anfwer nearly to days (for there are 360 degrees performed in 365 days), it is plain there muft be an eclipfe of the fun whenever the moon changes within eighteen days before or after the fun's
conjunction with either of the nodes; and that the moon mut be eclipfed whenever fhe is full within twelve days before or after the fun's conjunction with either of the nodes. The place of the moon's nodes may be found in moft almanacs, and thereby at what new and full moons there muft be eclipfes.

As the fun paffes through each node but once in the year, it is evident we can but have two capital eclipfes of the fun and moon in one year. In fome years there are but two, and both of the fun : there have been fix in one year, four of which were of the fun; but thefe are feveral of them partial and invifible.

We generally fay that nineteen years is the great period of the moon, and that at the end of that time fhe comes into the fame part of the heavens with the fun the was at the beginning of it; and from thence begins a reflitution of all their eclipfes. This is not ffrictly true. In making 223 revolutions the moon comes in conjunction with the fun, and the node from whence they fet out: but this takes place in 18 years 11 days 7 hours and $43^{\frac{1}{2}}$ minutes; and therefore, if that time be addel to the mean time of any eclipre, we fhall have the mean time of the return of that eclipfe. So that any one in poffeffion of a fet of almanacs for nineteen years, may eafily calculate the time of any future eclipfe, allowing for the odd hours which, every four years, make leap-year.

It is a curious fact, that the time from the middle to the end of an eclipfe, is always longer than from the beginuing to the middle. May not this be occafioned by the impulfe of the earth's centrifugal light; which, co-operating with the fun's attraction, accelerates the approach to, and retards the departure from, the middle? And as
the moon when eclipfed is at that time deprived of the fun's impulfive light, is it not agreeable to the known laws of motion, that being for a time deprived of the caufe of her motion, fhemoves in the latter part of the eclipfe only by her vis inertia, or the quantity of motion fhe had acquired before fle was deprived of the fun's light? And may not the irregularity of the moon's motion about the change, be alfo occafioned by the reaction of the earth's light againt that of the fun, in conjunction with the difturbance fhe meets with there by the fun's attraction? And as one-half of her monthly period is performed on that fide of the earth which has no light to throw off, muft there not be a difparity in the attraction and repulfion, which I apprehend to be the caufe of her motion; and may not this produce her elliptic orbit, the receffion of her nodes, and the revolution of her line of apfides? But there are fo many irregularities in the moon's motion, that it is faid to require above forty geometrical theorems and calculations to afcertain them. One would naturally fuppofe that when the moon has paffed the full, and is then attracted both by the earth and fun in nearly the fame direction, that her motion would be fo accelerated that fhe would move fafter from the full to the change, than fhe would from change to full : but this is not ftrictly the cafe when fhe changes in perigee ; in this fituation, for the ten days before fhe arrives at the change, there is 8 hours and 54 minutes difference of time of her paffing the fame meridian : but on her return from her change in perigee, for ten days following, that difference is 10 hours and 3 minutes ; confequently her motion from the fun is fwifter than her approach towards him. This may be better underftood by fig. 2, Plate XLVI. Let E be the earth, S the fun, G the moon's orbit, and a its apogee, and p its perigee. Let the moon, p, begin her courfe from the change in perigee, or from the left hand towards
the right; and let c be the meridian of any place turning with the globe the fame way. Now, while the earth has turned once round upon its axis, the moon has travelled from 60 to 6_{5}, and the meridian c munt turn G_{5} minutes more before it will pafs her; of courfe 6_{5} minutes later than it paffed her the day before. In another day the arrives at 67 , and the meridian m will pafs her 67 minutes later than it paffed her the day before, fo that her motion now is very fwift. When fhe gets to 64 , the meridian will crofs her 64 , minutes later than the day before, \&cc. Hence the hour and minute is fhewn by the imner figures, as $1^{n} 5^{m "}, 2,12,8 i c \cdot$; and the figures on the outfide of the moon's orbit, how many minutes the meridian is later every fucceeding day in paffing her. It may be perceived that her motion from the fun is fwifter than towards him; for in her defcent towards him from the full at a towards k, fhe is but 50 , 46 , and at one place but 40 minutes later than whein croffed by the meridian the preceding day. The moon is 29 days 12 hours and 44 minutes in going from a change to the change again, which is her folar or fynodical revolution; but in going from a far to that ftar again fhe is 27 days 7 hours and 4.8 minutes, which is called her fidereal or periodical revolution : the difference of which periods axifes from the motion of the earth round the fun, which makes that luminary feem to travel round the ecliptic at the fame rate as the earth really does; hence in the time of one revolution of the moon, the fun feems to have gone forward in the ecliptic near a twelfth part of his apparent annual journey, fo that the mooin muft go farther than round thie heavens before fhe can overtake him, and come to her change ; this takes up 2 days 5 hours and 1 minute, the difference of time in which a fynodical and fidereal revolution of the moon is made : hence when the moon is full at a, fuppofe at twelve at night, and on the meridian, it will be 43 minutes paft
twelve the next night before fhe paffes the meridian, and 5^{1} minutes after 49 minutes paft twelve when fhe croffes the meridian the next night, \&rc. fo that the figures round the figure denote the difference of time between the minute fhe paffed the meridian one day, and the minute fhe pafied it the preceding day, $\& c$ c. and hence may be feen how much flower fhe moves from a by k to p, than from p by z to a. Thefe figures denote the real difference of time between the moon's paffing the meridian from day to day, that is; when fhe changes in perigee ; but when the changes in apogee thefe intervals are very different; for eight days before the change, the zubole difference of time between her croffing the meridian each fucceeding day amounts to 6 hours and 20 minutes; but in receding from the change it amounts to 5 hours and 50 minutes, in eight days : this may be underftood by a reference to fig. 3, Plate XLVI.; where E is the earth, S the fun, m the moon, and O her orbit. Here the moon m changes ia apogee (or in the moft diftant part of her orbit from the earth), and different from her change in perigee;-flhe is accelerated in her defcent towards the fun from the full at O , by s to m; and retarded from the change m by x, to the full at O : the figures (as in the 1 ft diagram.) denoting the number of minutes that the moon paffes the meridian later every fucceeding day. In both thefe diagrams, the numbers are deduced from the lateft and moft accurate obfervations.

May not this acceleration and retardation of the moon's motion in thefe two important fituations of her orbit be accounted for from the principles of attraction and repulfion? In the firft diagram the moon is full in apogee, at a; may not that diftance from the earth and fun be the caufe why her motion is fo flow, that fhe croffes the meridian only 43 minutes later than the did the day before?-As fhe
approaches nearer the earth and fun, that fhe flould be accelerated according to the numbers 51 and 52 ?-That towards her third quarter fhe fhould again be retarded by the fun's repulfive ftream, acting againft her motion according to the numbers in the diagram. $48,47,46,44$, and 40 ? - And that her approach to change in perigee, fhould again accelerate her motion, as the comes nearer and nearer to the earth, and partaking more and more of its attraction, fo as not only to overcome that attraction in the point of perigeum, but to have the acceleration increafe a day or two after fhe has paffed the change at m, as $60,65,67$? after which (going farther and farther from the earth every day till fhe arrives at the full), The has her motion retarded.

But when the moon changes in apogee, as fig. 3, Plate XLVI. her motion is pretty equally accelerated for eight days before the change, or from s to m; for increafing her diftance from the earth gradually, and that diminifhing attraction having to contend with the folar ftream at s, a balance takes place, fo that her motion is equal for two days, viz. $44,44^{\circ}$. After which the folar ftream acts every day more and more parallel with the lines in which the gravitates towards the earth, fuch as 48,3 , and 51,1 , $\& \mathrm{c}$. fo as to render the fream of little retarding power: here the fun's attractive power becomes the greater agent, and caufes the acceleration denoted by the figures $45,46,48,51,8 \mathrm{c}$. But now that fhe is arrived at the change fo diftant from the earth, fhe would feem to be held between the contending attractions of the fun and-the earth, and here fhe would ftop (or find a place where the two attractions balanced each other) if it was not for her vis inertia, or that tendency which all bodies have to continue in the motion they bad acquired; this power carries her, by the point of her change
in apogee, and hence fle begins to be retarded as foon as the has paffed it, according to the numbers $47,45,43$, \& c c. But drawing nearer to the earth about her firf quarter, and of courfe becoming more and more influenced by its attraction; being alfo near the place where the fun's repulfion begins to overpower his attraction (refpecting the earth and moon), and expofed perpendicularly to the impulfe of that fiream; fhe begins again to be accelerated, as may be feen by the numbers $41,44,4,7$, \&cc.

But when the line of apfides is not in a line with the fun, moon, and earth, as in the above examples, but the apogee is about the quarters of the moon's path, the attractions and repulfions, the influences and difturbances, become fo complex, that nothing but a long ferics of obfervations can folve the great arcana of the moon's real motion. Much has been done, and a good deal. remains yet to be done; but at prefent it is fo far known, that the longitude at fea is better found by the moon's motion than by any pther method yet found out.

During the moon's revolution, fhe always keeps the fame fide towards the earth ; or rather, perhaps; towards the other focus of her orbit, as a, fig. 2, Plate XLIII. ; for the meridian $c d$ has a conffant tendency towards the upper focus of the lunar orbit, by which fhe acquires a longitudinal libration. In her fyzigies, or conjunctions, at p and \approx, the meridian $c d$ is in a line with the earth and the focus a, and her full face is feen ; but as fhe approaches n, a little portion of her face on the right difappears, and a new part appears upon the left, as o u; which is again loft as the approaches z. From \approx to q, a. new portion on her right appears, and an equal quantity difappears on her left. Thefe are called her librations in longitude.

But as her orlit inclines five degrees and thiree quarters from the plane of the ecliptic $r s$, fle will be at p fo much above the level of the earth's path, the ecliptic, that one may look farther under her than at q; and when fhe is in her perigee at z, fhe will be fo much below the level of the ecliptic, that one may look over her: thefe additions to her ufual face are called her librations in latitude, and they reach about feven degrees farther than her medium face, towards her other fide, which we never fee. A lunar globe has been lately publifhed by Mr. Ruffell, that not only fhews the librations in the moft perfect manner, but is a complete tranfcript of the mountains, pits, and fhades on her difk.

When the moon rifes at the full, in the eaff, flee looks much larger than when fhe culminates, or comes to the meridian, and is, therefore, called the horizontal moon. This feems ftrange, when we reflect that the moon is confiderably nearer to us when at the meridian than when in the horizon. Suppofe a fpectator at a, fig. 4, Plate XLuII. fees her in the horizon at B, he will fee her under an angle $c a b$; becaufe the ray from her upper limb $d o$ will be fo refracted by the earth's atmofphere at 0 , as to be bent into the direction $o a$; and as we fee every thing along that line in which the rays come to us laft, we fee the upper limb of the moon d along the line $a c$, and, of courle, greatly magnified. But when fhe arrives more in the zenith, or at the meridian A, the rays are not fo much refracted (fee Optics) as when they fall more obliquely on the atmofphere; therefore fhe appears near her natural fize. The moifture and vapours generally over an ifland contribute to this deception. Children believe every thing larger than it is, when looked at through a fog; and only from experience learn to judge right: our want of experience in looking at the heavenly bodies
makes us children, till by ufing micrometers, we learn to fee the moon the fame fize in the horizon as at the meridian.

During our winter, the fun being in the fouthern part of the ecliptic, the full moons happen in the northern hemifphere; and (during what we call the light of the moon) fhine upon the inhabitants within the arctic circle every fecond fortnight without fetting, as may be feen upon any common globe; fo that, though they are deprived of the fight of the fun, they have fo much twilight and moon-light, that their fituation is not fo forlorn as might be imagined.

Another of what may be called the minor phrnomena of the moon, is the harveft moon. She aftonifhes the ignorant by rifing fix or eight evenings near the fame time in harveft, when fhe is about an hour later in her rifing every day at other times. That fhe fhould be near an hour later in rifing every fecond day, may be made evident by fig. 24, where we will fay the fun and moon are together on the meridian at twelve o'clock. Let the line $a c$ reprefent a part of the earth's furface, and d the meridian of any place. Now in the time this meridian makes a revolution, and comes to 12 again, the moon will have travelled from \circ to 1 , thirteen degrees (her mean motion) eaftward, fo that the meridian d will have nearly an hour to turn before it overtakes her. While the meridian makes another revolution, and comes again to 12 , the moon has travelled from 1 to 2 , and the earth has to turn almoft two hours before fhe is overtaken; for the earth turning fifteen degrees every hour, comes near the thirteen degrees which the moon travels every day ; fo that it is evident the muft rife and fet near an hour later every day, and, confequently, the tides (obeying her motions) will
obferve the fame intervals every day. But about the autumna! equinox fhe rifes feveral days nearly about the fame hour. This arifes from the near approach to a parallel of the firft part of her road through Pifces and Aries, with the horizon of any high northern latitude. Let $a b$ reprefent the horizon, fig. 5 , Plate XLIV. and $c d$ the moon's orbit as it lies to the horizon when fhe paffes through Pifces and Aries ; and the fmall circles, the diftance fhe travels every twenty-four hours. When that part of her orbit $c d$ rifes out of the horizon $a b$, in the direction $g f$, it muft neceffarily rife in a fhort fpace ; therefore the feven days fhe is in going from c to d, fhe will be but a few minutes later in her rifing every day than the preceding. But at the oppofite time of the year, viz. in fpring, her orbit lies a good deal in the direction $g f$ to the horizon : then two of the round fpots, that denote her daily travel, will crofs the horizon in lefs time than the whole feven in the former fituation. This may be made ftill more plain on a celeftial globe: for if three: patches are placed at thirteen degrees diftance from each other, on the ecliptic, on each fide of Aries, and the globe be rectified for London, or any higher latitude, they will be found to rife out of the horizon almoft all at once; but if the fame number be placedat the fame diftance about Libra, they will take up feveral hours. In this account we have treated the ecliptic as if it was the moon's path; for the deviating from it but five degrees and three quarters, it would make little. difference. It may alfo be feen that we have twelve. harveft moons in the year ; for the moon paffes through Pifces and. Aries twelve times in the year ; but at no time fo convenient to be: feen as at fix o'clock in an harveft evening.

But of all the circumftances belonging to our moon, there is: none in which we are fo much interefted as in that wonderful.
influence we find fhe has upon the waters of our feas, and the air of our atmofphere: for that fhe affects both, there can be little doubt, when the tides in each element keep fuch exact time with her motions. It may be thought, indeed, that we, who are deftined to grovel at the bottom of our element, can know no more of what paffes on, or near its furface, than thofe fifh, which camot rife from the bottom, can know of the tides on the furface of the fea. But we know that the barometer is more unfteady at the full and change of the moon than at other times; and that the fun and moon acting more in a line at the equinoxes than at other times, agitate the air and fea peculiarly at thofe periods: it is alfo faid, that the full and change affect the nerves of the infane: all which indicate. fpring tides in the air, as well as the fea.

When the mind of man became fufficiently enlightened, he would naturally enquire into the various appearances of nature : the tides would undoubtedly excite his curiofity: he would obferve that the waters rofe bigher at certain times than at others, and that fuch rifing: happened at uniform periods of the moon's motion; he, therefore, could not doubt but fhe was the caufe.

That the moon has an influence upon our earth, is certain from the nutation fhe caufes in its axis. Suppoie her in her greateft declination, and in perigee, fig. 3, Platc XLIV. at a. It is evident fhe muft have a feronger tendency to draw the carth's equatorial protuberance $d c$ out of its inclination to the ecliptic, than when fhe acts upon it more in a line, as $c h$; and thereby to lift the axis. out of its natural direction, i. e. into that of $z y$. This nutation was afcertained by Bradley to alter the direction of the earth's poles
$18^{\prime \prime}$ in eighteen years and feven months, the great year of the moon.

Was our globe one uniform body of water, or any other fluid, by turning on its axis it would foon affume an oblate figure. But was it difturbed by either the attraction or repulfion of another diffant body, it would not retain that figure, but affume one in a ratio compounded of both. Hence if that difturbance was uniform and continuous, an effect conftant as the return of the feafons would take place, and intimate that fomething of that kind muft be the caufe of the tides. -The coincidence of the moon's motions with the return and fucceffion of the tides, evidently prove the moon to be the caufe, and that by means of her attraction : for wherever fhe is fufpended over the ocean, fhe will difturb its natural gravity at that place ; and by diminifhing its tendency towards the earth's centre, the preffiure of the water which furrounds the part fo difturbed, will force up that part into an heap or protuberance. This elevation or fwelling will follow the moon acrofs the Atlantic and Pacific oceans from eaft to weft, becaufe the earth turns under the moon from weft to eaft. Fig. 2, Plate XLV. will render this doctrine more familiar, where this protuberance is fhewn buth in plan and elevation: z in both is the fwelling (being lighter than the furrounding water) ; c and d is the furrounding water, which being poffeffed of more of its natural gravity than the protuberance z, and lefs influenced by the moon's attraction, neceffarily will fqueeze \approx above its natural elevation.

This influence being afcertained, its effects upon a flexible fluid may eafily be conceived. Suppofe the moon (foon after her change) hangs over the féa, as fig. 2, Plate XLV.; that by her attraction
in the line $a b$, fire diminifhes the gravity, or tendency which the fea has towards the earth's. centre, and caufes it to fwell into the protuberance $c \approx d$: this protuberance cannot be fationary; as both the earth and moon are in continual motion; for the earth turning on its axis from weft to eaft, under the moon, the protuberance will follow her from eaft to weft (like a prodigious wave) over the great Atlantic and Pacific oceans, as before obferved, and being thrown on the fhores, will caufe flood-tide, as it is called. It might appear hence, that the waters would be dragged from the Furopean and African coafts, to the American ; and by reverberating back again to them, caufe a greater length of time between high-water and the moon paffing the meridian. Certainly the moon paffes the meridian before it is high-water any-where; for water camnot be put in motion at once: nor can the tides get over fand-banks, and up creeks and rivers, untrl feveral hours after the moon has paffed the meridian. Hence, it is not high-water at London until three hours after fhe has croffed the meridian. But as the moon hangs principally over the torrid zone, the protuberance under her muft occafion a vacancy towards the north and fouthern zones; and hence the waters rufh from the north and fouth towards the torrid zone, in both the Atlantic and Pacific oceans. This protuberance, however, cannot be perceived by a fhip in failing in thofe vaft oceans; it is too extenfive; it is only on the flores, and in creeks and harbours, that it is vifible. When the fun and moon are in conjunction and oppofition, the tides rife to a more than ordinary height, and they are called fpring-tides. For the fun has an influence upon the fea, as well as the moon; but inconfiderable, from his immenfe diftance : for as the power of attraction diminifhes as the fquares of the diftances increafe, the fun's influence is confidered only as three, while that of the moon is as
ten. At the change of the moon, thefe two powers are drawing the fame way, and, of courfe, thirteen may be faid to be attracting the waters; and produce a fpring-tide.

Let us now enquire how this travelling tumor vifits the ports and fhores of the world; and why places (feemingly in the fame circumftances) fhould differ fo widely in their time of high and low water. In the firft place, it muft be obferved, that the moon's influence paffes the meridian antecedent to her centre; therefore that the tide will begin to rife before fhe arrives at the place; and alfo begin to fubfide before her influence has left it: therefore, that as foon as the natural attraction of the earth begins to overcome the declining influence of the moon, the protuberance will fubfide, and return to its natural level. But let us again fuppofe a globe entirely covered with water, fig. 2, Plate XLI.; it is evident the moon's greateft influence would be at a, where the water would be higheft ; and that it would become lefs and lefs towards b and c, and, of courfe, low-water at d and e. Now, let us fuppofe the moon at change, fig. 5, Plate XLV. where the fun is drawing in the fame line; and the power of thirteen is operating upon the waters of the fea; in this cafe, the water will rife to a more than ordinary height, and be a fpring-tide, agreeable to experience. But when the moon comes to her firft quarter at d, her influence will be in the direction $d c$, while the fun's will remain in the direction $\mathrm{S} c$: the two powers will in a degree counteract the influence of each other ; for the power of ten will act in the direction $c d$, while the power of three only will act in the line $c S$; and hence, at the quarters, neap-tides take place. When the moon comes to the full at \approx fpring-tides again take place. How is this?-Are they not now better fituated to counteract each other than at the quarters? Here
we muft premife (what every one knows), that we have two tides in little more than twenty-four hours; i. e. if it be high-water with me at twelve to day, fituated at n, it will certainly be high-water with me foon after twelve at night, when I fhould be at the protuberance m : for wherever it is high-water, it is fo, at the fame time, to the antipodes of that place. That the fun and moon's united influence fhould be lefs at m than at n, there can be little doubt: but ftill the place m tends to the earth's centre c, as much as any other part of the globe, and is rather increafed than diminifhed by the two powers which are drawing in the fame direction. How, therefore, the tide m fhould rife for want of attraction, or from being left behind, at that place, I cannot conceive, though it is agreeable to the Newtonian hypothefis.

A fpectator at the fun, looking towards the earth and moon, would fee them pafs from his right towards his left hand, as in the fig. 3, Plate XLV. from A to B, which we will make to reprefent one lunation: the proportions being in the drawing pretty near what they are in nature; i. e. if the fun be fuppofed in the centre of the circle of which A B is an arch, then is $a 0$ the proportional diftance of the earth and moon when the is at the change; the diffances $1,2,3, \& c$. the diffances the earth travels in one day; and $a b c, \& \mathrm{c}$. the diftance the moon travels in one day. Then may it be obferved how a fecetator at the fun would fee the moon fall every day behind the earth till fhe came to her firft quarter at c; how fhe approached to, and paffed, the earth at the full ; how fhe went before him from the full to the third quarter; and then how the earth approached and overtook her at the change. For it is plain, when the earth is at 3 , and the moon at d, the would be feen behind the earth; and when the was at v, and the earth at 20 ,
fhe would be feen before the earth, \&cc. It may alfo be feen by this proportional drawing, that her track througlh the heavens is always concave to the fun, as well as that of the earth; that in every revolution fhe moves in one part fafter, and in another flower than the earth; and that fhe goes from change to change in twentynine days and a half. But the drawing is made as if the eart' moved round the fun in a circle; but its orbit is an ellipfe; and there is much reafon to believe, that it is not the earth that defcribes that ellipfe, but the centre of gravity, between the earth and the moon, that defcribes it; for the earth and moon may be confidered as but one body in refpect to the fun, and the impulfe by which he puts them both in motion. For, as the earth and moon mutually attract each other in proportion to their quantity of matter; and as the earth's quantity is calculated to be forty times that of the moon, if her diftance, 240,000 miles, be divided by 40 , it will give 6000 miles as the medium diltance of the centre of gravity from the eartl's centre. This agitation deviates but little from the track of the earth : and an idea of it may be formed from fig. 4, Plate XLV. where $A B$ reprefents a part of the earth's orbit; a the earth, c the moon, and d the centre of gravity between them: now, while the earth travels from a to g, the moon travels from c to v, and comes to her firf quarter; while the earth travels from g to h, the moon goes from v to n, and is at the full, oppofite the fun; as the earth goes from b to i, the moon goes from n to o, and is then at her third quarter; and while the earth travels from i to k, the moon travels from o to p, and comes again to the change, \&c. From this drawing, it might appear that the moon travelled much farther and fafer in her fecond and third quarters than in her firit and iaft; whereas, we find that fhe performs thefe parts of her orbit pretty nearly in the fame time, and apparently with the fame fpeed. In
regard to fpace, fhe moves as in the drawing; but in relation to the earth, fhe moves as far in her firft as in her fecond quarter, \&c. allowing for the fituation of her fyzigis.

The parts of the earth that are, in this period, fartheft from the moon, will have a fivifter motion round the centre of gravity than the other parts; or rather, the fide c, fig. 6, Plate XLV. will defcribe the large circle $m n$, while the fide a will only defcribe the finall circle $p q$, round the centre of gravity o. Now, as every thing in motion always endeavours to go forward in a ftraight line, the water c, having a tendency to fly off in the line $c r$, will in a degree overcome the power of gravity, and fwell into a heap or protuberance, as reprefented in the figure, and occafion a tide oppofite to that caufed by the attraction of the moon; and account for the two tides which take place every twenty-four hours and fifty-two minutes. This centrifugal tendency may be well illuftrated by fwinging a tumbler full of water vertically round, when the water will not be fhed though its mouth be downward.

At the change of the moon, the fun's influence is added to that of the moon, and the centre of gravity will, therefore, be removed farther from the earth than a o, and, of courfe, increafe the centrifugal tendency of the tide c : hence, both the attracted and the centrifugal tide are fpring-tides, at that time. But fpring-tides take place at the fuil as well as the change of the moon. Now it has been premifed, that if we had no moon, the fun would agitate the ocean in a fimall. degree, and make two tides cvery twenty-four hours, though upon a finall fcale; his infuence (from his diftance) being but as 3 , while that of the moon is 10 . The moon's centrifugal tide, along the arch $c d$, fig. 7, Plate XLV. being increafed by the fun's attraction, will
make the protuberance a fpring-tide ; and the fun's centrifugal tide, along the curve $b i$, will be reinfurced by the moon's attraction, and make the protuberance b a fpring-tide : fo fpring-tides take place at the full, as well as change of the moon.

When the earth's axis inclines towards the fun, as in fummer, and the moon is new, the day tides, in the north, will be greateft, and night tides loweft : at the full, the reverfe. Fig. 8, Plate XLV. will render this plain : a is the tropic of cancer, over which the moon is vertical; the day-tide, therefore, at a, will be higheit : but the tropic at b, in the night-tide, will evidently dip but a little into the fwell, and, therefore, be lower : at the arctic circle, at c, it is alfo evident there will be but one tide in the twenty-four hours.

When the moon is vertical to the equator, about her change, the fun's influence and hers will coincide; and their-joint influence raife the tides to a more than ordinary height: this happens about the time when the fun croffes the equator, in March and September, when equinoctial tides and forms are proverbial; fee fig. 8, Plate XLV. But as the fun is nearer the earth in winter than in fummer, and, of courfe, nearer in February and October than in March and September, thefe equinoctial tides gencrally happen a little after the autumnal equinox, and a little before the vernal.

The time of the tides does not always anfwer to the fame diftance of the moon from any meridian: for the fun's attraction, at her change, retards her motion a little, particularly when both are in a line with the earth. This is one of the caufes that make lunar calculations fo difficult. Neither do they happen alike to places on the fame meridian; for capes, fands, fhoals, creeks, \&ic. retard:
their motion, and hence they happen at every hour to thofe places from the moon's departure from a meridian until her return to it again. Tides alfo are not fo much perceived in the open fea, as in bays and rivers; which having wide mouths, and growing narrower, the ris inertice of the water in motion is fuch as to make it rife, like a huge wave, many feet above the level of the fea whence it came.

The time of high water at any place, being known, at the change and full of the moon, the time of high water at all other times may be eafily reckoned, as that is about 52 minutes at a medium later every day. For as the earth turns on its axis 15° every hour, fo 13° (the moon's daily motion), wanting but two degrees of the fifteen, it is generally faid that the tides are an hotir later every day, when in reality it is but about 52 minutes, anfwering to the 13°. Hence, if it be high water at twelve on Monday, it will be high water again at 52 m paft twelve on Tuefday; and on Wednefday; at 44^{m} paft one, \&c.

Here follows a few places, with the time, by their clocks, when it is high water at the change and full.

				H	M					H	M
Amiterdam	-	-	-	3	-	Cadiz	-	-	-	4	30
Antwerp -	-	-	-	6	0	Cape Clear	-	-	-	4	30
Archangel	-	-	-	6	0	Cowes	-	-	-	10	30
Baltimore -	-	-	-	5	15	Dieppe	-	-	-	10	30
Bayonne	-	-	-	3	30	Dover	-	-	-	1 I	30
Breft	-	-	-	3	$33 \frac{1}{2}$	Dunkirk	-	-	-	11	45
Boulogne	-	-	-	, 11	0	Dublin	-	-	-	9	15
Briftol -	-	-	-	6	45	Muuth Scine	-	-	-	9	0
Brighthelmfon	-	-	-	10	45	Mouth of the	Sut		-	6	\bigcirc
Beachy-head	-	-	-	\bigcirc	\bigcirc	Mouth of the	Tha		-	12	\bigcirc
Bourdeaux	-	-	-	3	-	Edinburgh	-	-	-	4	30
Cape of Good	Hope	-	-		30	Ediftonc -	-	-	-	5	30
Cherbourg		-	-	7	30	Falmouth -	-	-	-	5	30
Calais	-	-	-	1 I	30	Gibraltar -	-	-	-	\bigcirc	-
Cork	-	-	-	6	30	Havre de Gr		-	-	9	\bigcirc

									11.	
St. Helena	-	-	2	15	Nortil Cape	-	-	-	3	-
Haftings	-	-	11	O	Oftend	-	-	-	II	45
lle of Wight	-	-	9	0	Plymouth	-	-	-	6	0
Kinfale	-	-	5	15	Portland Ifle	-	-	-	3	0
Lizard	-	-	7	30	Portfmouth	-	-	-	11	15
Lifbon	-	-	2	15	Quebec	-	-	-	7	30
London	-	-	3	0	Rotterdam -	-	-	-	3	3
Milford Haven	-	-	6	\bigcirc	Senegal	-	-	-	10	30
Madeira	-	-	12	14	Weymouth -	-	-	-	9	0
St. Mary's Scilly -	-	-	3	45	Waterford -	-	-	-	10	30
Newcaftle	-	-	3	-	Yarmouth -	-	-	-	!	30
Nantes	-	-	3	\bigcirc	New York -	-	-	-	3	3

To attempt a reafon why the tides take place fo different in time, to places that are on the fame meridian, we muft enquire into the geographical locality of their fituation. Amfterdam has high water three hours after the fun and moon at their conjunction have pafied its meridian ; Antwerp, not half a degree weft of the meridian of Amfterdam, has not high water till fix: the map points out the reafon. Tides (obeying the motions of the moon) flow from the north along the coaft of Holland, fouthward; at the Texel they are obftructed by fand banks, and crooked paffages into the Zuyder Zee, fo that before the wave rifes to its greateft height at Amfecidam, it is three hours after the fun and moon together have paffed its meridian.

But at Antwerp, the crooked obftructions in its paffage up the Scheld requires more time ; hence it is fix hours after the fun and moon have paffed the meridian before it is high water at Antwerp. So it is at Archangel, by the intricate winding fhores of the Whitite Sca. Baltimore, in North America, has high water at a quarter paft five, by their clocks, i. e. when the fun and moon at their conjunction have paffed near eighty degrees over the meridian of Baltimore; fo that the influence has got half over the Pacific Ocian before the effect has reached Baltimore. When we confider tha
width of the Atlantic Ocean, and the inertia of water, it feems very natural that the wave fhould be left far behind the moon. Bayonne, in the bay of Bifcay, receives its high water by a returning tide from the Atlantic; for when the fun and moon have nearly croffed the Atlantic, the wave which followed them will return to Bayome, three hours and a half after they have croffed its meridian. Breft, though nearer to the returning wave than Bayonne, has an indented entrance into its harbour, and therefore, by its obftruction, has its high water nearly about the time of Bayonne: for though a wave may follow the moon quite acrofs the Atlantic, as well as the Pacific Oceans, it cannot follow fo faft, i. e. at the rate of fifteen degrees per hour ; therefore, being left behind, that portion of it that has loft the moon's influence will return, and caufe high water all along the weftern thores of Europe and Africa, confiderably after the moon has paffed their meridian. Hence we fee in the table, that high water takes place nearly about the fame time at Scilly, Lifbon, Cadiz, St. Helena, Cape of Good Hope, \&ic.

The tide thus returning from the Atlantic, makes its way up theEnglifh, or St. George's Channel, progreffively : at Falmouth and the Eddiftone (at new moon) it is high at half paft five ; Plymouth, at fix ; Cherburg, at half paft feven; Portland, at eight; Weymouth, at nine; Havre de Grace, at nine; Ifle of Wight, at nine; Dieppe and Brighthelmftone, half paft ten ; and at Dover and Dun1kirk, at half paft eleven.

Here the tide up the Channel is met by one from the German Ocean ; their meeting is contentious, and caufes what the feamen call a ripple in the fea; but two fuch bodies of water meeting, cannot eafily be ftopt, but will, agreeable to the laws of motion ${ }_{3}$. rife each above its natural level, and caufe that fiwelling in the Strais
of Dover, and of courfe in the mouth of the Thames, fo as to occafion its flood tide to be much more rapid than its ebb, and to be performed in two hours lefs time.

It may be afked, why the tides rife fo little among the iflands of the Weft-Indies (feldom more than twelve or fourteen inches), when thefe iflands are fo much more under the influence of the moon, than countries where the tides rife thirty or forty feet? To this it muft be anfwered, that as the Atlantic turns under the moon, from weft to eaft, her influence on its water muft be from caft to weft; this tide, like a prodigious wave, is ftopt by America, and reverberates back as the moon paffes over the Pacific Ocean. But in the fame direction that the moon drags the waters of the Atlantic, the trade winds conftantly blow ; and fo great is the power of wind, that tides every-where are made greater or lefs according as the wind is with them, or againft them. Now the Gulf of Mexico is a cavity between North and South America, into which the wvinds and tides are perpetually pouring in water; fo that the firft tide that ever flowed into it, may be faid to be kept up in it by this unremitting influx; and, of courfe, the tides cannot rife and fall as in places lefs in the way of thefe two caufes. But water raifed above the general level always endeavours to fall back to that level; the trade winds, in fome meafure, prevent this, by blowing perpetually from the eaftward. As water, fo accumulated, cannot return in the teeth of the trade winds, it wheels round the weft end of Cuba, and meeting with the Bahama Iiles, is turned northward along the coaft of America; forming that moft remarkable ftream, the ftrong current of the Gulph of Florida. To fhew that this accumulation does take place in the Gulph of Mexico, a furvey was made acrofs the Ifthmes of Darien, when
the water on the Atlantic fide was found to be fourteen feet higher than the water on the Pacific fide. It alfo is not improbable, from the fhape and fituation of the Weft-India iflands, that they are the remains of a continent; the lower lands being wafhed away by the above influxes, and their places now occupied by the Carribean fea.

On the outfide of Great Britain and Ireland, the tides run naturally from the north torvards the moon; but between the iflands they run unnaturally from the fouth towards the north, from the moon. This is occafioned by the near approach of the north ends of the two iflands, and the obftruction given the tides in flowing through the Hebrides; hence, as the fouthern feparation of the two. mflands is much wider, it is a more convenient entrance for the tides, and the Irifh Sea experiences a tide flowing from the fouth.

At the Naze of Norway there are no tides; for the efflux of water from the mouth of the Baltic meets the tide of the North Sea at right angles, and confounds its rife and fall.

There is a perpetual influx of water through the Straits of Gibraltar into the Mediterranean : but this is not a tide; the moon has nothing to do with it. The fandy foil and deferts on the fouth of this great fea, receive immenfe heat from the fun, and impart it to the winds that pafs over them; and as heated menftruums will diffolve more than cold ones, a fouth wind caufes fo great an evaporation on the furface of this fea, as to fink its level below that of the Atlantic : the ocean, therefore, pours perpetually in at the ftraits to reftore that level. This evaporation is often fo great, that the fails. of fhips are kept wet by the half-diffolved dews juft above the fur-
face; and thefe winds (called Sirocco), when they reach Greece and Italy, are fo hot, and full of vapour, that they unnerve and diftrefs every creature that cannot efcape out of their way.

There are many apparent exceptions to this doctrine refpecting the tides: the Mediterranean has but fmall tides; the Baltic none. In the Euxine and Cafpian, they can farcely be perceived: the moon's duration on the meridian of thefe fmaller bodies of water, is too fhort to put them in motion. The inertice of water is not eafily overcome: for if the moon's influence was fufpended for a while, and the waters fubfided into their beds, when the moon refumed her influence, it would be fome time before even the oceans themfelves could be brought into that regular vibration they have at prefent. Capes, headlands, fhoals, rocks, the inequalities at the bottom of the fea, \&c. all contribute to the irregularity; but thefe allowed for, the whole is reconcileable to the above theory.

Newtonian Doctrine, Respecting the Laws of Planetary Motion.

1ft law. Every body, or portion of matter, reould continue in its prefent flate of reft or motion, if not difturbed by fome external caufe. This is called the vis inertio of matter, or that tendency which all matter has to lie ftill when not moved by external impulfe, and to go on when put into motion. If a body be laid in any place, there we are fure to find it, if nothing removes it: and if I throw a fone, it would go for ever in the fame line, if the refffance of the air, the power of gravity, or fome other caufe, did not ftop it.

2d law. All motion, or change in motion, is proportional to the force
that is the callfe thercof: i. e. if a certain force moves a body witl certain velocity, a double force will double that velocity, \& co.; and if a body be aćtuated by two contrary forces, it will obey neither, but proceed in a direction compounded of both. Thus, if I throw a ftone in the direction $a b$, fig. 1, Plate XLVII. while the power of gravity pulls it in the direction $a c$, it will neither folely obey the power of gravity, nor my impulfe, but go in the diagonal a d, compounded of both.

3d law. Re-action is always equal and contrary to action. Thus, if a man in a boat pulls another boat of equal weight by a rope, they will approach each other with equal velocity, and meet in the middle of the way. So in rowing, fwimming, and flying; the oar may be faid to pufh the water one way, the water pufhes the boat the contrary way. Thus a man fiwimming pufhes the water one way, and the water drives him the contrary way. Birds beat the air backward with their wings ; the air drives them forward. So it may be faid, that when a hammer ftrikes an anvil, the anvil returns the ftroke. If I frike a fone with my hand, the effect is the fame as if the ftone ftruck my hand, \&c.

Though thefe fimple laws appear felf-evident, they are equally explanatory of celeftial phrenomena as of the appearances on the earth. For if we find that the moon and planets fall from a tangent projected to their orbits, as a bullet does, fhot from a precipice; this is ftrong proof that they are actuated by the fame laws (fee fig. 2, Plate IX. Mechanics), and that their orbits are occafioned by a compounded force, the projectile force tending to a ftraight line, while the power of gravity bends that line into an ellipfe. But why into an ellipfe?-In the firft place, let us fuppofe
a round board, a, fig. 2 , Plate XLVII. put into a fwift circular and horizontal motion, with a ball c upon it, and pulled towards the centre d, by a ftring and a weight hanging under the board: this weight may reprefent the gravity which any planet has towards the central fun. When the ball c partakes of the motion of the board, it will fly farther and farther from the centre d, till its tendency to fly off in a ftraight line fhall be balanced by the weight beneath the board: its motion then will be perfectly circular; its centrifugal tendency being juft a balance for the centripetal. Here then is a law by which one body may revolve round another without coming nearer, or receding farther from its attracting centre. But early in the progrefs of aftronomy, it was found, that the moon and planets moved fwifter in fome parts of their orbits than in others; and that their parallax was accordingly greater in thofe fituations in which they move fafteft: from thefe obfervations, there was proof of their orbits being elliptical ; and that there had been no particular adjuftment in balancing the centrifugal to the centripetal forces, at their firft creation: and the celebrated Kepler had difcovered, that a two-fold power of projectile or centrifugal force, would balance a four-fold power of gravity at all diftances. from the attracting centre. Let us familiarize this by fig. 5 , Plate XLVII. and fuppofe a planet, a, projected in the line $a d$, with a power inferior to the power of gravity $a \cdot S$: then would the centripetal power fo far prevail over the centrifugal, as to bring the planet down to c : but what flould prevent its nearer and nearer approach, until, in the fpiral $c c$, it fell to the fun? Here this wonderful law becomes confpicuous. At c, the planet being twice as near to the fun as at a, it has four times the gravity at c as at a (becaufe the power of gravity diminifhes as the fquares of the diftance increafe); but in its defcent from a to c, its velocity increafes by coming;
nearer and nearer to the fun, fo that at c we will fuppofe it moves twice as faft as it did at a. Now all motion having a tendency to become rectilinear (i. e. if motion be given to a body in ever fo crooked or oblique a way, it will always endeavour to fly off in a ftraight line), the velocity which the planet has acquired at c, is not in favour of the firal line $c e$, but in that of the tangent $c g$. Now if the four-fold tendency $c \mathrm{~S}$ can be balanced by the two-fold projectile force $c g$, we fee how the planet can relieve itfelf from the ftrong influence of the fun at its perihelion, and afcend by k to its aphelion at a. This is proved by actual obfervation of the planetary motions; and eafily made evident by the whirling-table.

Let the pulley a, fig. 5, Plate XLVII. be fuppofed to be turned by a large wheel, and along with it the weights b, and the ball c, fliding on the wire w. The four weights are over the centre of motion, and to be lifted by a fring going over the pulley b, and under the pulley i, and faftened to the heavy ball c. Fig. 6, Plate XLVII. is actuated by the fame large wheel ; but the pulley s being twice the diameter of the pulley a, this part of the machine will but move half as faft as the other. Now as the balls c and o are of the fame weight, and at the fane diftance from the centres of motion, their momenta muft be the fame, if they had equal motions. But it has been affirmed, that a two-fold motion, or power of projectile force, will balance a four-fold tendency to the centre. If fo, the double fwiftnefs of the pulley a, fhould make the ball c lift the four equal weights b, at the fame inftant the projectile tendency of the ball o fhould lift the fingle weight k, and fhew that a two-fold velocity will balance a four-fold power of gravity. This is exactly fo ; and if this proportion was deftroyed, by addiug or withdrawing a weight, the experiment would not fucceed.

By this do we difcover another rule, viz. that all the planets, as well as their fatellites, defcribe equal areas in equal times. Suppofe S the fun, in fig. 4, Plate XLVII. and a the planet at its perigee ; the ftrong tendency it has to fly off in the direction $a b$, brings.it in a given time to c; in the fame time it moves from c to d; and in the fame time, from d to $e, \& x$. But all the triangular fpaces, $1,2,3$? 4, \&cc. are equal to one another, and of equal area; fo that if the planet carried a ffring with it, one end of which was faftened to the centre of the fun, the ftring would pafs over equal fpaces in equal times. Thus do we fee why our fummer half-year is eight days longer than our winter half-year, as is plain by the figure; and why, perhaps, there is fo much more land in our northern hemifphere than in the fouthern, being more fit for inhabitants by the medium feverities of its feafons; for the earth being neareft to the 'fun in our winter, the rigour of that feafon is meliorated; and being fartheft from him in our fummer, that feafon has alfo its heat moderated. In the fouth, the contrary takes place; that hemifphere is addreffed to the fun in their fummer (being our winter), when the earth in her orbit is neareft to the fun ; accordingly it is found that, latitude for latitude, their fummer is much hotter, and winter much colder than ours. This unequal diftance is alfo found by meafuring the fun's apparent diameter with a micrometer, when it will be found, that the fun appears $32^{\prime \prime}$, about $\delta^{\frac{1}{5}}$ of his diameter, larger at midwinter than at midfummer.

The elliptic orbit of the moon is irregular, as her motion is much difturbed by the attraction of the fun : this is evident in the winter, when the fun is neareft to us; for then the is fo retarded by him, that her periodical month is longer than in fummer. By this attraction, alfo, is the acceleration of the place of her nodes brought about; vol. II.
and the greater and lefs angle her orbit makes with the ecliptic every revolution : from thefe circumftances, fhe cannot exactly defcribe equal areas in equal times.

Difances of the Planets. - The flhape of the orbits of the planets, and laws of their motion in them, being thus afcertained, we muft now try to find their diffances. Though this is a procefs not quite within the fphere of popular information, yet, I truft, it may be made plain even to thofe who have not made mathematics a ftudy. Suppofe the diftance of the moon were our firft object, and that we had a fea horizon, and were fituated fo as to have the moon pals our zenith. Then let A be the earth, fig. 7, Plate XLVII. and a the place of the obferver, who muft be fuppofed to have a quadrant, $b c$, by which he can note the moment the moon comes. to the zenith. Now, as the moon apparently paffes from a meridian to that meridian again in twenty-four hours and forty-eight minutes, fhe will perform a quarter of that circuit, viz. from d to e, in a quarter of that time, or in fix hours and twelve minutes. But the obferver will find that fhe will fet before the fix hours and twelve minutes are expired, which he muft note: for when fhe comes to his fenfible horizon $a c g$, fhe fets to him. Now, as the fenfible horizon is parallel to the rational horizon $k e$, a diagonal $a e$ will make the angle $c \approx$ equal to n, its oppofite angle. To find what the angle $c z$ is, fay, by the rule of three, If fix hours and forty , eight minutes be required for a quarter of the moon's circuit, or 90°, viz. from $d c$; how many degrees of the 90 would fhe pafs. through in the time of her going from the zenith to the fenfible horizon, or from d to g ? This will give the degrees of the arch $d g$, which being taken from 90°, or the quadrant $d e$, will leave the quantity of the arclj $g e$, or the angle $c z$. Now, as the angle n is:
equal to $c z$, we are in poffeffon of a right-angled triangle, $a k e$, with a fide and an angle known ; for $a k$, the femi-diameter of our globe, is 3960 miles: now it is the property of a right-angled triangle to have its fides proportional to the fines of its oppofite angles; therefore, as the angle π is to its oppofite fide $a k$, fo is the angle o to its oppofite fide $k e$, or the mean diftance of the earth's centre from that of the moon, viz. 240000 miles. This parallax, or angle u, is on a medium about $57^{\prime \prime}$. But the refraction which a fetting fun or moon's rays fuffers near the horizon (fee Optics), makes a confiderable difference. This method does well enough for finding the diffance of the moon in, or near, the torrid zone : but the fun is fo diftant, that his parallax or angle $g a \mathrm{~S}$ is too fmall to be meafured to any certainty, by an horizontal parallax. Dr. Halley, therefore, recommended the tranfits of Venus, which were to happen in the years 1761 and 1769 , as the moft perfect phænomena for afcertaining the diftance of the fun. But even, as to the moon, on looking in our Nautical Ephemeris, we find the moon's parallax altering in the courfe of one month from 54^{\prime} to 61^{\prime}, the caufe of which may be feen in fig. 8, Plate XLVII. Let E be the earth, and a its centre ; from that centre (if the earth was tranfparent) we floould transfer the moon at b to c in the ftarry heavens; when fhe was at e, we fhould fee her at x; and when fhe was at g, the eye at a would transfer her to $z, \& c$. Thefe are faid to be the true places of the moon. Her apparent places, are thofe in the heavens where fhe is feen when viewed from any part of the earth's furface. So that a fpectator at u would fee her at d, when fhe was at e; and when fhe got to g, he would fee her at $p, \& c . \& c^{\circ}$. So that the angle e a b would be her parallax, equal to the angle $x e d$: and hence her parallax is evidently moft when near the horizon ; it is lefs between p and z; lefs ftill between n and m; and none at all at the zenith s. So that with
the greater or lefs obliquity with which fhe is fituated to an obferver, the parallax is perpetually varying.

By the tranfits of Venus, almoft the whole diameter of the earth formed a parallax, inftead of the above femidiameter, by which a commenfurate angle was procured in this way. Venus moves ins her orbit in the direction $\approx n$, fig. 10, Plate XLVII.; and from the centre of the earth, c, would be feen to move over the fun's difk from s to v : an obferver, therefore, at a, would fee the contact at s, at the fame inftant that one at b would fee the planet at u; and one at d would fee it at its egrefs at v, along the line $d \mathrm{~V} v$: this would be the cafe were the earth at reft; but it is turning on its. axis, in the direction $a b d$. Now if the planet ftood fill at V, while the earth turned from a to d, that time would be eafily turned into the parallactic angle $a \mathrm{~V} d$, and might be treated like that of the moon : but the motion of Venus, as well as that of the earth, was to be taken into this calculation, as well as obfervations made in different latitudes: the refult of all which was; that the fun's parallax was found to be but about 8 "; but fmall as it is, 'tis an angle whofe fides admit of calculation; and the fun's diftance, by. this means, was found to be about 96 millions of miles.

The fun's diftance being thus found, the diftance of the planets. from him may be found, either by their retrograde motions, or by the celebrated problem of Kepler, viz. that the fquares of the periodical times of the plancts, round the fun, are in proportion to the cubes of their diftances from him. As the times, therefore, of the revolutions of the planets are well known, and as we know now the diflance of the earth from the fun, how am I to find the diftance of Mars from the fun?-By knowing that he is 686 days 23
hours 30 minutes and 36 feconds, in going round his orbit. By the rule of three, it will be as the fquare of the periodic time of the earth's motion round the fun (i. e. 3^{65} days 6 hours 9 minutes 12 feconds) is to the cube of its diftance (i. e. the cube of 96 millions of miles), fo is the fquare of Mar's periodical time (i. e. 686 days 23 hours 30 minutes 36 feconds) to the cube of his diftance from the fun. The cule root being extracted from that number, reprefents the proportional diffance of Mars from the fun.

The way of finding the diftance of a planet from the fun, by its. retrograde motion, and by knowing the earth's diftance from the fun, is thus, fig. 9, Plate XLVII. : Let S be the fun, e the earth; and m the planet Mars, whofe diftance from the fun is the object of enquiry; and let a, b, and c, reprefent an archof the heavens. Now, as the earth moves almoft twice round the fun while Mars moves but once, every twenty-fecond month we pafs by him, and he appears at every time to go backward: for when the earth is at ε, Mars would be feen at a; but as the earth paffes from e to d, Mars would have appeared to go retrograde from a to c, though, in reality, he was going the fame way as the earth, viz. from m to g. The arch $a c$ is found by obferving the planet in its retrograde ftate, and that gives the angle $a m c$, which is equal to the angle $c m d$, half of which is the angle $S m c$: hence we come in poffeffion of an angle, and its oppofite fide of the right-angled triangle $\mathrm{S} m \mathrm{c}$; for $\mathrm{S} c$ is the diftance of the earth from the fun, and the angle m is found as above: fo, as the angle m is to the fine $S c$, fo is the angle c to the oppofite fide $\mathrm{S} m$, or the diffance of Mars from the fun.

This problem is performed as if Mars ftood ftill at m, while the eartli was moving from c to d; but, in reality, he is going forward
to g, and would be feen from d at b. But fince the quantity of Mars's motion, during the time of his retrogradation, may eafily be found, it may be known how much the angle a $m c$ is diminifhed, and, confequently, what that retrograde motion would have been had he ftood fill at m.

This method is applicable to all the fuperior planets; and the diftance of the inferior planets from the fun, may be found by a fimilar procefs. Let S be the fun, fig. 1, Plate XLVIII. ; a the planet Venus, at her greateft elongation (or that place where the appears the fartheft diftant from the fun) ; b, the earth ; and $c d$, a portion of the ftarry heavens. The triangle $a b S$ is a right one; and the angle b is eafily taken with a quadrant: being, therefore, in poffeffion of that angle, and the line $b \mathrm{~S}$ (the earth's diftance from the fun), the perpendicular (or Venus's diftance from the fun) is found by plane trigonometry, as in the laft problem.

The mean diftance of each planet from the fun being thus found, we double that diftance, and it is the diameter of their orbit; and as the diameter of a circle is to its circumference nearly as 7 is to 22 , their orbits and hourly motion may be eafily calculated, viz.

This aftonifhing diftance and velocity may be expreffed in numbers: but neither numbers nor diagrams can implant in the mind any diftinet idea of thofe aftonifhing diftances, or motions! (which
are yet almoft as nothing to other diftances, and other velocity), By applying facts and images to which we have been accuftomed to affift the mind, a faint conception may be formed of them. A cannon ball moves at the rate of eight miles in a minute: according to this, it may be computed, that in flying from the fun it would require the following time to reach

Mercury	-	-	-	
Venus	-	-	-	$16_{\frac{1}{2}}$
Earth	-	-	-	$22 \frac{3}{4}$
Mars	-	-	-	$34^{\frac{3}{8}}$
Jupiter	-	-	-	$118{ }^{\frac{3}{3}}$
Saturn	-	-	-	$2177^{\frac{3}{5}}$
Georgium planet		-		$435 \frac{1}{\frac{x}{2}}$
The fixed		-		0,000

If balls, placed on poles, were made to reprefent the fun and planets,
Mercury flould be
Venus -
Earth 2^{2} yards from the fun.

Moon σ_{2}^{1} inches from the earth.
The fize of thefe balls, to bear a proportion to the above diftances, fhould be,

The Sun	-	-	-		feet
Mercury	-	-	-		in
Venus.	-	-	-		
Earth	-	-	-	5	
Mars	-	-	-		
Jupiter	-	-	-		
Saturn	-	-	-		
Gcorgium	-		-		ch.

Another mode of expreffing proportional diftances from the fun:

4	7	10	15	59	95	120
	9	θ	8	4	5	H

The diftances of the planets being known, their magnitudes are calculated by their apparent diameters, at thofe diftances. The fun, when. feen from oppofite fides of the earth at the fame moment, appears in the fame place, becaufe of his great diffance, and the finall comparative fize of the earth. The moon (though apparently as large as the fun) appears, to two obiervers, at only a few leagues from one another, in different parts of the heavens, on account of her nearnefs, and great parallax, which is 4,30 times as great as the fun's; the diftances of the heavenly bodies being inverfely as the tangents of their horizontal parallaxes. And we have obferved that fpectators, on different parts of the earth, faw Venus on different parts of the fun's difk, at the fame moment. From thofe diftances, and the angle the planets fubtend at thofe diftances, their magnitudes are calculated with tolerable certainty. Their largelt apparent diameters, as feen from the earth, are, the Sun $32^{\prime} 36^{\prime \prime \prime}$, Mercury $12^{\prime \prime \prime}$, Venus $57^{\prime \prime}$, Mars $27^{\prime \prime}$, Jupiter $40^{\prime \prime \prime}$, Saturn $18^{\prime \prime}$, the ring of Saturn $42^{\prime \prime}$, Georgium Sidus $4^{\prime \prime}$. Their real diameters, proportional diffances, fidereal revolutions, \&cc. are expreffed in the following table:

	Diameters in Eng lifh miles.	Proportional diftance from the fun.	Sidereal revolution.	Inclination of their orbits.		
Sun	893522		d. h. m. s.			
Mercury	3261	38710	$8723 \quad 1514$	7°	0^{\prime}	
Venus	7699	72333	224164911	3	23	35
Earth	7920	100000				
Moon	1161		$27 \quad 7430$			
Mars	5312	152369	686233036	I	51	-
Jupiter	90255	520279	4332142711	1		56
Saturn	80012	954072	10759 1 5I TI	2	29	50
Herfchel	34217	1008180	83 years, 157 days and is hours.	0	4^{6}	20

CHARACTER AND PROPERTIES OF THE PLANETS.

The Sun.

This vaft globe is the firft of the celefial bodies that attracts our notice. It is the fountain of light, heat, and fire ; the great illuminator of the world! It is the centre of the planetary fyftem, adminiftering to the various worlds which compofe it, light, heat, and vegetation. By his attraction and repulfion he retains the planets in their orbits. His magnitude, diftance, and denfity, have been calculated; and fo many of his attributes afcertained, that there remains little doubt of his being, as it were, the foul and actuating principle of the fyftem; as well as a world fufceptible of inhabitants. By fpots on his face we can fee that he turns round an his axis in twenty-five days and fix hours from eaft to weft. If the emiffion of light were the whole of his deftination, we fee no reafon why that might not be performed by a body at reft, as well as by one in motion. It feems confiftent with analogy, and the frugality of Nature, in never doing any thing in vain, that this motion is to throw off centrifugal light through the zodiac ; and thereby to give annual and diurnal motion to the planets. (See Optics, \&c.)

Thofe fpots by which we eftimate the time of the Sun's rotation on his axis, have been thought the finoke of volcanos; fcum floating on an ocean of fluid matter ; clouds ; nay, the Sun himfelf has been confidered as a globe of fire. But, by obferving them with a due magnifying power in telefcopes, they are found to be hollow, and may be feen diftinctly when they arrive at the edge of the fun, where a fmall indentation will appear on that edge, as a, fig: 2 , VOL. II.

Plate XLVIII.; and from the fhade that is feen round each fpot, there appears a fhelving flope into each pit. Now this appears as if in common we did not fee the real fun, but only its atmofphere, which, perhaps, may be of fluid fire, furrounding his black body like an ocean; and in which there may be commotions that may temporarily lay part of his body bare, and account for the fpot, its furrounding fhade, and the flip that feems cut out of the fun's edge when the fpot is difappearing. Or, perhaps, we may fee the dark nucleus through a thin part of his fluid atmofphere, as we fee the wick of a candle through its flame; or the opaque ore through the intenfe flame of a furnace. This makes the Sun more like the reft of the fyftem than any other fuggeftion that has yet appeared, and pleads ftrongly in favour of his being inhabited. Nay, indeed, we may confider him as the only planet in the fyftem, and that our earth and the other worlds are but his fatellites! Glorious luminary! can we blame ignorance for making thee a god! What a body muft he be, when the whole orbit of the moon could not contain him! when his attraction and influence reach even beyond the Georgium Sidus ! His axis inclines eight degrees from a perpendicular to the plane of the ecliptic, by which his centrifugal light (flying off in the plane of his equator) rifes a little above, and falls a little below, the level of the ecliptic: this light may be feen a little before the fun rifes, about the time of the folftices, and is called the zodiacal light: we prefume this ftream of light to be the caufe of amual and diurnal motion in all the plancts, and of all their irregularities. (See Section 1ft and 2d, Introductory Lecture.)

Mercury.

This finall planet moves round the fun fo near to his body, that
it is feldom we fee him ; and when we do, it is for fo Chort time, and always in the twilight, that we can fee no fpots upon his face, and confequently know nothing of his diurnal motion, or length of his days and nights: but we can fee that he performs an annual journey round the fun in eighty-feven days twenty-three hours and fixteen minutes; fo we fay, in round numbers, his year confifts of eighty-eight of our days. When we do fee him, he appears like a little half-moon, fhewing that he borrows his light from the fun. His annual motion and borrowed light being thus afcertained, we doubt not of the other qualifications neceffary to make him a fellow world with the reft of the fyftem; and though his heat is calculated to be feven times as great as ours, no doubt his matter and inhabitants are adapted to it.

As the inclination of Mercury's orbit is feven degrees oblique to the ecliptic, he can be well obferved only near our equator, and feldom in high latitudes: therefore, though he paffes fo fwiftly round the fun, it is generally above or below him; but when he paffes through his node at the time of his conjunction with the fun, we fee him pafs over the fun's difk like a little round black fpot. This is called a tranfit of Mercury.

Mercury is faid to be 3222 miles in diameter, as calculated from the fize he appears to the earth, viz. twelve feconds; to be thirtyfeven millions of miles from the fun; and to move at the rate of 110680 miles per hour: the fun to him would appear feven times as large as to us.

Venus. \ddagger.

This beautiful planet is diftinguifhed in the firmament by her
chafte brilliancy; her light being fo white as to caufe fenfible fhadow, and fo vivid that at her greateft elongations fhe is vifible in the fulleft daylight, to the naked cye : her furface is fo free from fpots, that her diurnal motion is only guefied to be twenty-three hours and twenty-one minutes. Her orbit, like Mercury's, is within ours, and therefore we never fee then oppofite to the fun; and fhe circumfcribes it in 224 days 16 hours and $49^{\frac{1}{4}}$ minutes, at the rate of 80955 miles per hour. Her diftance from the fun is about feventy millions of miles, and her diameter 8244 miles, found by its fubtending an angle from the earth of fifty-feven feconds. Her axis is faid to incline feventy-five degrees from the axis of her orbit: and hence the reafon why fhe has two fummers and two winters at her equator; why her tropics are much nearer her poles than ours; why her feafons increafe and decreafe fafter than ours; and why fhe has feldom her forenoon and afternoon both of a length. The fun, however, by paffing fo fwiftly from one of her tropics to the other, gives the heated places time to cool; and this, no doubt, is wifely calculated for the good of her inhabitants.

This planet is fometimes a morning, and fometimes an evening ftar, as may be feen by fig. 3, Plate XLVIII. where S is the fun, E the earth, and $a b c d e f$ the orbit of Venus, and the direction in which fhe revolves round the fun. When fhe is at a, fhe will be feen from the earth at k, a little to the eaft of the fun, or juft above the weftern horizon, when the fun fets: when at b, flie will be feen at m, a little higher, when the fun fets: when fhe gets to c (her greateft elongation), fhe will be feen at n, forty-feven degrees above the fun when he fets, and where fhe will feem ftationary for a few days; becaufe fhe is then coming towards the earth pretty nearly in a line. As fhe advances towards d, fhe will be feen to come nearer
and nearer to the weftern horizon every evening when the fun fets ; and at e fhe will be invifible (her dark fide being towards us), except we meet her in the node, when fhe would tranfit the fun's face like a little blaek fpot. All this time fhe has been an evening far. She has noiv paffed by the fun, and we fee her at s, a little before the fun rifes. When fhe gets to t, we fee her at u confiderably before the appearance of the fun. At f the comes to her greateft apparent diftance from the fun to the weft, and is then nearer and nearer to him every morning, at g, n, \&c. till fhe again paffes behind him between s and k. So far we have confidered the earth as fanding fill at E : but it is paffing forwards towards z; and fhews why Venus is longer a morning than the is an evening far. During this revolution, we fometimes fee more and fometimes lefs, of her. enlightened fide, like the moon. When at a we fee almoft a full Venus; at b fhe is gibbous; at c fhe is like a little half-moon; from c to d fhe grows more and more a crefcent and at e quite dark; at s we fee the thick part of the crefcent towards the eaft; and being now fo near the fun, fhe is obferved in the day, \&cc. \&c. To the inhabitants of this planet the fun will appear twice as large as to us; and Mercury will be a morning and an evening ftar to them as Venus is to us. Her atmofphere has alfo been calculated as fifty miles in height, from a fhade appearing about five feconds upon the fun's face, before the dark body of Venus feemed to touch his edge, at the time of her tranfit.

The Eartb \ominus and Moon D.

Having devoted a lecture to this third planet in the order of the fyftem, and its fatellite the moon, we pafs by them here, and afcend to

Mars. 才。

This planet is known in the heavens by a dufky-red appearance: and as the red part of light has only momentum enough to pierce through a grofs or thick medium, and as a dufkinefs appears over thofe fars that he paffes near, a grofs atmofphere is fuppofed to occafion this appearance. When he is oppofite to the fun, or when we fee him near the meridian about midnight, he is much more brilliant than in another fituation (being five times nearer to us than at the conjunction) ; a large fpot is then diftinctly feen on his face, by which his diurnal motion is afcertained to be in twenty-four hours thirty-nine minutes and twenty-two feconds. His year is nearly two of ours, being 686 days 23 hours $30 \frac{3}{4}$ minutes. Hence we fee an analogy between this planet and the earth, a little ftriking, in their diurnal motion being nearly the fame; and in his orbit being nearer in the fame plane with ours than any other, croffing it only at an angle of one degree fifty-one minutes. It is rather furprifing that he fhould have no moon; as he is almoft twice the diffance from the fun that we are: perhaps the height and refractive power of his atmofphere may prolong the fun's light. To Mars the fun would appear one third lefs in diameter than to us, being 144 millions of miles from him ; and his apparent diameter at the earth being but $27^{\prime \prime}$, his real diameter will be 4,189 miles: our earth would appear a ftar to Mars, about the fize that Venus appears to us ; and never above 48 degrees from the fun. His figure, fig. 4, Plate XLVIII. is alfo oblate, the equatorial being to the polar diameter as 131 to 127.

Fupiter. थ.
The next of the fuperior planets is Jupiter; the largeft in the fyftem, being 90228 miles in diameter, though to the eye he appears not fo large as Venus; nor does he fubtend fo large an angle at the earth as Venus, his being but $400^{\prime \prime}$. This vaft planet is five times as far from the fun as we are; and has, therefore, but a twenty-fifth part of the light, heat, or gravitation, that we have. He turns on an axis perpendicular to the plane of his orbit, in nine hours and fifty-fix minutes; by which his days and nights are of an equal length, and never vary. He has, from the fame caufe, no variety of feafons: it being perpetual fummer near his cquator, and perpetual winter towards his poles. From the exceffive fwiftnefs of his rotation on his axis, his equatorial diameter has fwelled fo as to make him a much more oblate figure than the earth; by which it is thought his clouds and vapours are thrown more immediately up to his equator, and appear like ftreaks or belts, round him : this is made probable from their frequent change in number and fituation: when their number is moft confiderable, one or more dark fpots frequently appear between the belts, and difappear as they do. The remarkable fpot, by the motion of which Jupiter's rotation on his axis was determined, appeared in 1694, and was loft till the year 1708 , when it re-appeared, on the fame part of his face, and has been occafionally feen ever fince. The fpots and belts feen the 7 th of April, 1792, with a feven-feet Newtonian telefcope, are exactly reprefented fig. 8 , Plate XLIX. Some alfo fuppofe thefe belts to be feas, and that thofe variations are occafioned by tides differently affected, according to the pofitions of his moons.

This noble planct is fplendidly accompanied; having four fatellites, or moons, attending him on his journey round the fun,
which he performs in 11 years 314 days and 10 hours, at the diftance of 499750000 miles from him. The periods of Jupiter's fatellites are,

Thefe four moons perform their revolutions round him with fuch exactnefs, that could we make correct obfervation of them at fea, we fhould have no occafion for time-keepers, or offers of thoufands for finding the longitude; the eclipfes of Jupiter's fatellites would develope that defideratum beyond the correctnefs of any timekeeper. But how? - Were there a flafh of lightning, or any other inftantaneous phænomenon, to happen, fo high above the earth, that half the globe could fee it at once, the longitude of the place of each obferver would be eaflly afcertained. By longitude is meant the diftance eaft or weft that one place lies from another. So, if I faw the flafh of lightning at twelve by my clock, at the inflant another faw it at one, then does the latter lie fifteen degrees eaft of the former ; becaufe the earth turns fifteen degrees every hour upon its axis from weft to eaft. If another faw the flafh at ten which I faw at twelve, then is he two hours behind me, or twice fifteen degrees to the wef of ine. If another faw the flafh at feven in the morning, when by my clock it was twelve, the perfon was five hours behind me, or five times fifteen degrees to the weft of me, or feventy-five degrees. Now the eclipfes of Jupiter's fatellites afford thofe inftants, when feen through a good relefcope. Call S the fun, fig. 7 , Plate XLVIII. E the earth, a the planet Jupiter, and b his firft, or neareft fatellite, juft dropping into the fhadow of Jupiter, and inftantly lofing its borrowed light. Now, fuppofe a perfon in the woods of North America wifhful to afcer-
tain the longitude of the place, or, in other words, how many degrees the meridian of Greenwich was from the meridian of the place where he was. We may fuppofe him poffeffed of the Nautical Ephemeris, in which the exact time of every eclipfe of Jupiter's fatellites is fet down for the meridian of Greenwich, for many years beforehand. On the night he purpofes to obferve, he fees the firft fatellite b will be eclipfed at fix in the morning to all who are on the meridian of Greenwich ; but being fo far to the weftward, he determines to watch late at night; and at twelve o'clock he fees the eclipfe take place along the line xii b, at the fame inftant the people of London fee it along the line vi b. Now, as the earth turns fifteen degrees upon its axis every hour, and as there is fix hours' difference, it is evident he lies fix times fifteen, or ninety, degrees weft of Greenwich, which would be the true longitude of the place to be put on a map or globe. The motion of a fhip has hitherto prevented this fimple method of finding the longitude at fea from being effectual ; and hence the large premiums offered for a clock or watch that would keep time with the fun in all climates. The ufe of fuch an inftrument would be to fet it with the fun at the place whence a fhip was to fail; as fuppofe the Lands End, the fhip bound for Quebec. Now, if the fhip fails at twelve o'clock, due weft, the obferver will find next day at twelve his watch and the fun not together : by his quadrant he will find, perhaps, the fun on his meridian, when the watch is at one o'clock. It muft be obferved, that the watch keeps the time of the place he departed from; and therefore, that place paffing the fun fooner than the place, where he is, will make a difference in the time pointed out by the fun and the watch. If an hour, as above, he is fifteen degrees to the weft of the Land's End. The wind continues fair, and next day, when the fun is on his meridian, he finds
it two o'clock by his Land's-End watch; fo that in two days' failing, the clock and the fun differ two hours, or twice fifteen degrees; therefore he is now thirty degrees weft of the Land's-End. Thus, a time-kecper that would go exactly with the fun, would make the art of finding our way upon a tracklefs occan of no difficulty ; for finding the latitude by the flars and the fun is made eafy by tables. And thus, if we can know by obfervation, how far we are to the eaft, the weft, the north, or fouth, of the place we fail from, our track and fituation can be marked on a chart, juft as roads are upon a common land map. But heat and cold, moifture and drynefs, imperfections of contrivance, and workmanfhip, all confpire to render this machine incorrect ; fo that we are ftill obliged to refort to celeftial motion for finding the longitude. The moon, from the fwiftnefs of her motion, is the beft adapted for this important purpofe. Her approach to, and recedence from, remarkable fixed ftars, is, at prefent, our only exact means of finding how far we are eaft or weft from the meridian of Greenwich, or any given place. The moon's diftance from the fun, from \& Arietis, from Aldebaran, from Pollux, Regulus, \& Aquilæ, \& Pegafi, \&c. calculated for every three hours, gives the longitude in time ; which (as above) is eafily reduced to degrees, and, of courfe, to miles. For example; I hold my quadrant flat, or on a level with the moon and the ffar for obfervation; I find in the Nautical Almanac they will be diffant from each other 75° at twelve this night: I watch with my quadrant and time-keeper, and at three in the morning, I find them juft that diffance. Why then it is evident, from what has been faid, that I am three times 15° to the eaft of the meridian of Greenwich, or my longitude is 45° eaf. The manner in which thefe are placed in the Nautical Ephemeris is thus:

Difance of the Moon's centre from the Sun, and Stars eaft of ber.

Star's	Days	Noon	iii hours	vi hours	ix hours	Midnight	hours	xviii hrs.	xxi hours
		D. M. S.	D. M. S.	D. M, S.	D. M. S.	D. M. S.	D.M. S.	D. M. S	D. M.
Pega		6713					84937	577	552514

As the aftronomical day begins twelve hours later than the civil day, i. e. at twelve at noon, and is counted twenty-four in fucceffion; we fee in the above table that the ftar a Pegafi, on the 17 th of June, will, at midnight, at Greenwich, be $60^{\circ} 32^{\prime} 43^{\prime \prime}$ eaft of the moon ; at fifteen o'clock it will be $58^{\circ} 49^{\prime} 37^{\prime \prime}$ eaft of the moon, \&rc. Now if thofe diftances are found by the fextant, at a time different from the table, the longitude of that place is alfo found. Suppofe I fee a Pegafi $62^{\circ} 16^{\prime} 22^{\prime \prime}$ at eleven at night, inftead of nine, as in the table; then am I two hours to the eaft of Greenwich, or twice 15°, and my longitude is 30° eaft. Allowance, however, in this calculation muft be made for refraction and parallax, agreeable to what has been formerly explained, which may be found in what is called the Requifite Tables, and other books of navigation. Though the caufe of the refractive power of the atmofphere has been explained in the optical lecture, the ratio in which that refraction increafes from the zenith to the horizon has not been ftated. Here follows a table of the refractions which the light of the fun, moon, and ftars, fuffers at different altitudes.

$A p_{i}{ }^{\text {ar. }}$Alt.		$\begin{gathered} \text { Refrac- } \\ \text { tion. } \end{gathered}$	Appar. Alt.	$\begin{gathered} \text { Refrac- } \\ \text { tion. } \end{gathered}$	Appar. Alt.	Kefraction.	$\begin{gathered} \text { Appar. } \\ \text { Alt. } \end{gathered}$	$\begin{gathered} \text { Refrac- } \\ \text { tion. } \end{gathered}$
D.	M.		D. M.		D. M.		D. M.	
0	\bigcirc	$33^{\prime} 45^{\prime \prime}$	130	$3^{\prime} 47^{\prime \prime}$	39	$\mathrm{I}^{\prime} 6^{\prime \prime}$	65	$0^{\prime} 25^{\prime \prime}$
-	15	$30 \quad 24$	14	33^{1}	40		66	- 24
\bigcirc	30	$27 \quad 35$	150	$3 \quad 17$	41	12	67	O 23
\bigcirc	45	25 II	160	34	42		68	- 22
I	0	$23 \quad 7$	17	253	43 -	- 5^{8}	69	21
1	15	2120	18	243	44	- 5^{6}	70	- 20
1	30	1946	190	$2 \quad 34$	45	- 54	71	19
1	45	1822	20	226	46	- 52	72	- 18
2	\bigcirc	17	210	$2 \quad 18$	47	- 50	73	- 17
2	30	15	22	2 II	48	- 48	74	
3	-	1320	23	25	49^{\prime}	- 47	75	- 15
3	30	II 57	24	I 59	500	- 45	76	- 14
4	-	IO 48	25	I 54	5 I	- 44	77	- 13
4	30	950	26	I 49	52	- 42	78	12
5	\bigcirc	9	270	I 44	53	- 40	79	O II
5	30	8 21	28	140	54	- 39	80	- 10
6	-	$7 \quad 45$	29 -	I 36	55	- 38	81	9
6	30	$7 \quad 14$	30	130	56	- 36	82	8
7		647	31	I 28	57	- 35	83	- 7
	30	622	320	I 25	58	- 34	84	- 6
8	\bigcirc	6	33	I 22	59	- 3^{2}	850	$\bigcirc 5$
8	30	540	34	I 19	60	- 3^{1}	86 0	4
		$5 \quad 22$	35 ○	I 16	61	- 30	870	3
9	30	56	36	13	62		88 -	- 2
10	,	$4 \quad 52$	37 ○	I II	630	- 27	890	\bigcirc
II		$4 \quad 27$	$3^{8} 0$		64 -	- 26	90	\bigcirc
12	\bigcirc	45						

This eftimate has its exceptions; for when the air is in a very denfe ftate, its refractive powers are greater ; and in a rarefied or lighter ftate, lefs. Moifture and rain increafe its refractive power; and cold to a very great degree ; infomuch, that fome Hollanders, who wintered in Nova Zembla, and had a continual night of three months, found the fun appear to them feventeen days fooner than by computation he ought; which muft have arifen from the fun's rays paffing through the cold denfe air of that climate. Why a greater refraction takes place near the horizon than the zenith, may
be feen by fig. 5, Plate XLVIII. where E is a fomi-carth, S the fun in the zenith to a perfon fituated at a. The dark fhade reprefents the earth's atmofphere, through which the ray S a paffes perpendicularly, and without refraction ; (fee Optics). But to a fpectator at c, the fun would be feen at i, for the ray $\mathrm{S} n$ is bent at n into the direction $n c$; and as we fee every thing along that line in which the rays from it came laft, we fee the fun along the line cni. The obferver at g fees the fationary fun S at k; for there the refracted ray $z g$ is more bent : but the obferver in the horizon at s, has the ray $\mathrm{S} r$ falling fill more obliquely upon the atmofphere, and bent in the direction $r s$; and hence he fees the fun S at m, under the greateft refraction.

But to return to Jupiter. His fatellites do not revolve round him in the fame plane; nor are their nodes in the fame place: the firft fatellite inclines $2^{\circ} 55^{\prime}$ from the plane of Jupiter's orbit, and its afcending node is in the middle of Aquarius $\approx=$. This fatellite is the moft important of the four, from its numerous eclipfes, having often eighteen or twenty in one month, for its period round Jupiter is only forty-two hours twenty-feven minutes thirty-four feconds, and diftance one minute and fifty-one feconds. But to form an idea of the track which all the fatellites make through the heavens, as they accompany Jupiter on his amnual journey, fee fig. $\&$, Plate XLVIII. where the progrefs of fixteen days is depicted, and figures annexed. Let Jupiter be at a, and his four fatellites in conjunction. Now, while he travels from a to 1 , his firff fatellite will travel to 1 ; and while Jupiter travels from 1 to 2 (his fecond day's journey), the firft fatellite travels from 1 to 2 , having made, a loop below the orbit of Jupiter; fo that the configuration the firlt day after the conjunction would be as in the figure, viz. the firft fatellite would be
feen on the left of Jupiter, and the other three on the right: for it muft be fuppofed we are looking at them on a level with the ecliptic; or as if we took the paper that contains the figure, and held its edge to the eye,

It is curious to obferve in this figure, that the three firft fatellites come nearly into conjunction every feventh day: in that time, the firft fatellite has made four revolutions round the planet; the fecond fatellite, two revolutions; and the third fatellite, one. In the next feven days, it may be feen, the fourth fatellite comes nearly to the weekly rendezvous; but he moves fo wide as to be feldom eclipfed, or in conjunction. By this figure may be feen how Jupiter and his moons have their configuration in the Nautical Ephemeris: thus,

On the firft of the month, at 11 at night, the $2 d$ and $3 d$ fatellites are on the left of Jupiter; and the 1 ft and $4^{\text {th }}$ on the right: it may be feen alfo, that there is obliquity in their orbits; that the ed and 3 d are in slorthern latitude, while the 1 ft and 4 th are in fouthern latitude.

On the fecond day, at the fame hour, the ift fatellite is in eclipfe;
and the $2 \mathrm{~d}, 4$ th, and 3 d , on the, right of the planet. On the third day, at the fame hour, the $2 d$ and 4 th are on the left of the planet, while the $1 f$ and 9 d are fo much in a line, or in conjunction, that they appear but as one. On the fourth day, at the fame hour, the 2d fatellite would be feen like a bright fpot on the difk of Jupiter ; the 3 d , on his left ; and the 1 ft and 4th, in conjunction, on his right. The moons of Jupiter turn round him the fame way he turns on his axis, in the order of the figns: fo that when we fee a fatellite beyond Jupiter, as it were, its motion is direct; as from a by b to c, fig. 6, Plate XLVIII. But when it moves from c by d to a, its motion appears retrograde : hence, they all feem to vibrate from one fide of him to its oppofite, fome moving direct, and others retrograde.

Jupiter himfelf has one retrograde and two fationary appearances every thirteen months : for in that period we always pafs by him. Let a reprefent Jupiter, fig. 1, Plate XLIX. and e the earth : now, while the earth is moving from e to m, Jupiter will appear ftationary at x; but while the earth moves from m to n, the planet will have appeared to go back ward from x to z; and while the earth moves from n to q, the planet will appear retrograde from z to r : but while the earth moves from q to s, Jupiter will again feem ftationary at r. This is a frong and clear proof that the earth is not the centre round which the heavenly bodies revolve; for were that the cafe, the retrograde and ftationary appearances of the planets had never exifted. But if the earth be a planet among the reft, moving fafter than the fuperior planets, and flower than the inferior, thofe appearances muft take place ; as it would be in two unequal failing fhips going the fame way; to the fwifter, the flower would appear to ftand ftill or to go backward.

When we are in that part of our orbit neareft to Jupiter, we fee the eclipfes of his fatellites fixteen minutes fooner than when in the remoteft part ; proving light to be progreffive, and that its influence comes from the fun to us in about eight minutes. This was firft - obferved in thofe parts of the earth's orbit which lie in the fame line with Jupiter, as e and m, fig. 1, Plate XLIX. Now, if the effect of light were inftantaneous, an eclipfe at Jupiter would happen at e at the fame time as at m; but the moft common obfervation will prove it is not fo; but that the eclipfe is feen feveral minutes fooner at m than it would be at c. Befides, the inftant when any of thefe eclipfes will happen is eafily determined by calculation; becaufe the times in which they perform their revolutions are known ; and therefore, if they take place fixteen minutes fooner when the earth is neareft to Jupiter than when it is in the fartheft part of its orbit from him, it is evidently occafioned by the time which light takes up in being put in motion acrofs the diameter of the earth's orbit.

With what inconceivable velocity muft light impel light through fuch an amazing extent of face! ninety-five millions of miles in eight minutes! a million of times fiwifter than a cammon ball !the mind fhrinks from the purfuit of fuch an idea.

Even as to the fixed fars, it was long fufpected that they were feen a little differently in their fituations at one time, in our annual journey round the fun, than they were at another. Bradley obferved in a zenith fector, or perpendicular telefcope, the ftar γ Draconis in a different part of the field of the inftrument at one part of the year than it was in another; and foon conceived that this appearance muft arife from the progreflive motion of light: which
may be thus explained. Suppofe $a b$, fig. 1, Plate XLIX. a part of the earth's orbit, and that a fpectator at a were obferving the ftar c; and that the motion of light was to the motion of the earth as the line $c b$ to $a b$; then by the time the earth had travelled from a to e light would have been impelled from c to g, and the ftar would be feen at 1 . When the earth got to i, light would have fallen to \approx, and the ftar would be feen at 2 ; fo that when the earth arrived at b, the ftar would be feen at d. Or fuppofe a drop of rain were to fall through the inclined tube $a b$, fig. 3, Plate XLIX. ; it is evident, that if the tube were pufhed from b to c, while the drop would fall from a to c, that the drop would fall through the tube without touching its fides. So it would be with a particle of light ; that when the tube arrived at c, the particle would be feen at d. This is called the aberration of light; and proves that particles of light are ftreaming from every ftar in the heavens, and that the immenfity of fpace is filled with moving light in all directions.

Jupiter's equatorial diameter is 6000 miles more than his polar diameter ; or they are to each other as thirteen to twelve. His orbit is inclined to the ecliptic only $1^{\circ} 20^{\prime}$. His aphelion (or place where he is fartheft from the fun) is the $9^{\circ} 10^{\prime}$ of Libra, and that is but $\frac{1}{20}$ of his mean diftance from the fun. His afcending node is the $7^{\circ} 29^{\prime}$ of Cancer; and defcending node of courfe the fame in Capricorn. This planet, feen from his neareft moon, would appear 1000 times as large as our moon does to us; increafing and waning like her, every forty-two hours. An obferver from Jupiter would fee two kinds of planets; four near him (i. e. his fatellites), and two remote, viz. the Sun and Saturn : but the fun would appear but the 48 th part fo large to him as to us. Since the appearance of the great comet in 1682, Jupiter has not moved through the fame track
in the heavens, as bcfore that time : and as the comet croffed his orbit near where he was at the time, it is natural to fuppofe the comet had a temporary influence upon him, and that the fubfequent deviation was occafioned by it. But as the diforders of nature carry their own felf-phyfic along with them, that deviation would gradually diminifh; and accordingly we now find Jupiter approaching very nearly to the fame track he purfued before tha year 1682.

Saturn म.

This fupendous planet deceives the eye, by its pale and feeble light; for, next to Jupiter, it is the largeft in the fyftem. It fubtends an angle at a mean diffance from our globe of $18^{\prime \prime}$; and is 29 years 167 days and 6 hours in going round the fun. From thefe data, his diameter is calculated to be 79979 miles, and his diffance from the fun $9^{16,500,000 ~ m i l e s . ~ H i s ~ d i u r n a l ~ m o t i o n ~ i s ~}$ not yet well afcertained ; being fo remote, and his fpots are fo ill defined ; though it is faid to be in ten hours and fixteen minutes: Five fatellites were difcovered many years ago ; and lately, two more have been added to the five : befides thefe, a large broad, double, and luminous ring furrounds his orb, which muft add greatly to the light derived from his feven moons. This vaft ring muft appear to his inhabitants like a diftant and immenfe arch of light in the heavens, and was probably intended to affift the imperfect light to which he is fubjected by his diffance from the fun. With thefe affiftances, and the fun's original light, which is computed to be 500 times the light we have from our full moon: though his light and heat is fo far inferior to ours, no doubt the eyes and confiitution of his inhabitants are adapted to them ; and that he may bo
as comfortable an abode as the worlds that are more emriched with thofe bleffings. Saturn appears through a telefcope of 400 magnifying power of the fize and figure of fig. 5, Plate XLIX. In this may be feen the flhadow of the planet on the lower part of the double ring ; and a fpot between two belts. Sometimes he appears like fig. 6, Plate XLIX. and of that fize, feen through an ordinary telefcope. This ring is calculated to be 204883 miles in diameter, furrounding Saturn at a diftance equal to its breadth: it inclines about thirty degrees to the plane of the ecliptic; and by roughneffes on the edge, can be perceived to turn on an axis perpendicular to its plane, in eleven hours. With this inclination, it keeps parallel to itfelf, as fig. 7 , Plate XLIX. during the thirty years' revolution of Saturn round the fun. It is plain, therefore, that twice in this journey, viz. every fifteen years, the plane of this ring will be with its edge towards us; and then it will appear like a line over the body of the planet, reaching fome diftance on each fide of it, as at a and b. If this ring be opaque, as the fun fhines fifteen years on its north, and the fane time on its fouth fide, it will have equal day and night; each fifteen years long. This may be better underftood by the fig. 7 , Plate XLIX.

The fifth fatellite of Saturn evidently turns on its axis, as it varies in brightnefs in proportion as it advances in its orbit; and it is probable all the reft do the fame: their periods round the planet are-

The periods of the two late difcovered fatellites are,

$$
\begin{aligned}
& \text { 6th }-:- \\
& { }_{7} \text { th }- \\
& \hline
\end{aligned}
$$

The fiviftnefs of Saturn's motion on his axis produces an oblate figure; fo that his equatorial diameter is calculated to be to his polar diameter, as 11 is to 10 .

Georgian Planet, or the Herfchel.

This planet was difcovered by Dr. Herfchel, in March, 178^{8}, From the flownefs of its motion, aftronomers had miftaken it for a fixed ftar: Flamftead made it the 34th ftar in Taurus; and the difcoverer at firft fuppofed it to be a comet. It was found nearly in a line with Caftor and Pollux, and fo near the ecliptic, as natu-rally fuggefted a fufpicion of its being a planet. Its regular motion was foon difcovered, which removed all doubts of its being a planet; particularly when it was found to be accompanied with two fatellites. Subfequent obfervations have added four more, two of which are faid to move in a retrograde motion, or contrary to the order of the figns *. It is calculated by M. de la Lande to be eighty-nine times larger than the earth; to be nineteen times further from the fun than the earth ; and that its year is the length of eighty-two of ours. The apparent diameter of this planet being but four feconds, it can only be feen by the naked eye in the abfence of the moon: it is of a blueilh-white colour, and well defined, when feen through a telefcope of a confiderable magnifying power.

[^24]The periods of its fatellites are as follow :
d. h. m.

Ift, or nearef, in	5	21	25	late difcovery.	
2d	-	8	18	0	difiovered fome time ago.
3d	-	10	23	4	late difcovery.
4th	-	13	12	0	difcovered before.
4th	-	38	1	49	late difcovery.
6th	-	107	16	40	ditto.

COMETS.

These feven primary planets, and the eighteen fecondary ones, or moons, are confidered as the regular bodies of the folar fyftem: they move pretty nearly on the fame level, and in the fame direction. But the fyftom is fometimes vifited by other bodies, which approach the fun in all directions. Thefe are called comets; from their having generally a ftream, or hair-like appendage, adhering. to them. The various opinions of the learned, refpecting thofe wonderful bodies, would fill a volume. Halley conceived them to be planets, moving in very eccentric orbits, but defcribing equal areas in equal times, and therefore having their periods reducible to calculation. He contends for the comet of 1682 , of 1607 , of ${ }^{5} 4.56$, and 1505 , being one and the fame; and that the difference in thefe periods was occafioned by the attraction of Jupiter, as the path of the comet lay near him; but that it would appear again in the year 1758 . A finall comet was thought to be feen at that time, by a few obfervers in France, but fo unlike the comet of 1682, in fize and duration, that it was impofible to be conceived the fame. We have been looking out for another thefe ten years, that fhould have appeared according to the above calculation, but it has not yet appeared. When we find fuch excellent aftyono-
mers and mathematicians, as Dr. Hallev, miftaken, I fear we muft fufpect that the motion of comets does not come within the fphere of calculation. Sir Ifaac Newton fuppofed the tails of comets a kind of vapoury atmofphere, rarefied by the fun, and brufhed behind the comet by his emanating rays (for the tail of a comet points always from the fun) ; and that this moifture mighi be intended to fupply the wafte, occafioned by vegetation, on the feveral planets; and, perhaps, at laft, the comet might fail into the fun, and recruit him with frefh fuel. Others have fuppofed them capable of being inhabited, notwithftanding their extremes of heat and cold : that as they approach the fun the atmofphere becomes fo rarefied, as to be incapable of imbibing or retaining heat; and that as they recede from him the atmofphere wraps more round them, becomes more denfe, and of courfe more fufceptible of imbibing heat. Obferving that the tail of a comet, the aurora borealis, and electrical light, do not refract or bend light that paffes through them ; i. e. that fars feen through the tail of a comet, and through an aurora, are feen in the fame place, as if there was no fuch matter between them and the obferver; it has been fuppofed that thefe three phænomena are of one and the fame kind of matter.

Hevelius fuppofes the nucleus, or head of a comet, to be tranfparent; and that the fun's light paffing through it, forms the tail. This idea is ingenious; and I fee nothing in the numberlefs obfervations upon comets, that proves their nucleus opaque. May I hazard a conjecture in fuch learned company? Many comets have been traced to the fun, and have not been found to return from him : as many comets have been difcovered retrograde as direct, in their motion towards the fun : and it is remarkable that (except the comet of 1744) they have all moved very oblique to the ecliptic;
at great angles, as $36^{\circ}, 48^{\circ}, 89^{\circ}, 8 \mathrm{cc}$. \&cc. If concentrated electricity be capable of affuming the appearance of a ball of fire, as proved in the Lecture on that fubject, and that electricity be but folar light, in a ftate of great purity, may not contending light, meeting in fpace from feveral funs, form fuch a condenfation, as to make a ball of embodied light, like the electrical thunderbolt? That this ball fhall be tranfparent, and impelled from this meeting by that fream of light which is the ftrongeft, and forced towards the next fun? Sce Plate I.; and fig. 8, Plate XLV. of Aftronomy.

We have already fuggefted that centrifugal light is thrown off from the equatorial part of our fun, and that its repellency is greateft there; therefore, the fun's attraction will be lefs impeded about his poles, and of courfe be greateft there. Light is attracted by all bodies, where a repellant power is not predominant on their furface; therefore light, either in a dilute or concentrated fiate, may be drawn into the body of the fun, about his poles, notwithftanding the atmofpheric repellency of his equatorial parts. May not this account for the obliquity with which the comets move, refpecting the ecliptic, and the fun's equator, and their univerfal tendency towards his poles? May not the obliquity with which they fall towards the fun, make them fometimes pafs by him? and by paffing into his equatorial fream be thrown off to a confiderable diftance, before the medium becomes dilute enough for the nucleus to difperfe? and thus the comets to have the appearance of a revolution? Is not the irregularity of their appearance favourable to this conjecture? and is it not probable that meteors themfelves are but fmaller affemblages of concentrated light, which foon melt in corrufcations into the general mafs? It may be objected, that light having paffed through a tranfparent body, would be lefs
than the light which furrounds it, and therefore that it could not be feen. To this I oppofe fig. 8, Plate XLV . where m is the concentrated ball of light, caufed by the mecting of the ftreams $s m, t m, \& c$. : now if the impulfe $n m$, and $t m$, be predominant, the ball will be pufhed towards s, fo far, perhaps, as to come within the attraction of a neighbouring fun; towards which it will be accelerated, and increafe in brightnefs ; the fun's rays carrying off a portion of its condenfed light, as it paffes through it, and thereby increafing alfo the brightnefs of the tail. That light is liable to this kind of concentration, we fee in many inftances; it darts in this ftate from iron in a white heat, in impalpable balls, that burft with report and emanation. Balls of electrical light fly through a vacuum ; and concentrated lightning frequently affimes the appearance of a ball, and has been feen to roll along the earth before it burft. This kind of ball has alfo been produced by the excitation of common electricity. This is but another conjecture added to the many already in being; and it has its difficulties in common with them. No doubt, comets are ordained for fome wife and ufeful purpofe, in the fcheme of creation, though we have not yet had penetration enough to find it out.

On the FIXED STARS.

If from the fpace allotted for the folar fyftem, we launch out into that infinity of fpace that furrounds it on all fides, we may contemplate wonders truly worthy of their divine Author! Whoever conceives the fixed ftars to be placed in a concave furface, and equally diftant, as they appear to us, muft have a limited idea of creation; for one far appears large, another little, becaufe they are placed at immenfe diftances from each other : it is our limited fight that makes them appear equi-diftant ; for it is not improbable that
the finalleft apparent ftar is as large as the brighteft, and only ap)pears fo from its greater diftance. By the naked eye we can but fee about 500 ftars at once; fo that all we can fee in both hemifpheres, is not much above 1000. This appears extraordinary, becaufe we fuppofe we fee thoufands at once ; but this is a deception of our eyes, which running from one far to another multiplies them without end. Select a portion of the hemifphere, on a clear night, and count the ftars it contains, and you will be amazed at the fmallnefs of their number. From this we muft not fuppofe their number really to be fmall; by telefcopes 2000 was added to the 1000 feen by the naked eye, fo that fome time fince the catalogue of fixed fars was about 3000 . But by the improvements, made in that inftrument by Dr. Herfchel, and the unremitting ufe he has made of it (by fweeping the heavens), not lefs than 30,000 have been added to the former catalogue! Nay, were our glaffes fill better, no doubt we fhould difcover more*.

Our telefcopes have their limits, as well as our eyes, but the fpace we explore has no limits! Can any one fuppofe thefe bodies were only intended to give a faint twinkling light in the night feafon, when thoufands cannot be feen by the unaffifted eye? And when an additional moon would have been more effectual for that purpofe,

[^25]than the whole hoft of heaven? This twinkling appearance, at firft fight, diftinguifhes the fixed ftars from the plancts, which fhine by a bright and fleady luftre, fomething like a diftant candle. The fixed flars are mere points to us, from their immenfe diffance; and therefore the fmalleft mote in our atmofphere will tcmporarily cover them: thefe perpetually in the air, caufe this tremulous appearance; particularly near the horizon, where the flars twinkle moft, becaufe we look through a greater portion of the atmofphere in looking horizontally than in looking upwards. Befides this, the rays that feem to iffue from a luminous body that is near (as a candle), are the reflection of the finooth moif furface of the eye-lids, that touch one another when we wink. But that cannot be the cafe in looking at a ftar; for its impreffion on the retina is a mere point, and it will caufe vibrations round that point in proportion to the intenfity of its light: the telefcope magnifying this point, ftrips the ftar of thofe rays. Floating motes do not diffurb the light of a planet, becaufe of the largenefs of their apparent furface.

By means of the zenith fector, Hook, Flamftead, and Bradley, obferved for fome time the tranfit of γ Draconis over this perpendicular telefcope; hoping that the diameter of the earth's orbit might make an angle or parallax with it : not at all! The ftar was feen fo near the fame place, when the earth was at its fpring and autumnal equinox (near 200 millions of miles different), that no eftimate could be made! Bradley gueffed there might be an angle of about two feconds, which would make the fixed ftars 400,000 times as far from us as the fun! M. J. Caffini fuppofed the annual parallax of Sirius to be fix feconds, from which it was caiculated to be 18,000 times further from us than the fun. Now,
as light (like gravity) diminifhes as the fquares of the diftances in.creafe, i.e. if a candle at a, fig. 9 , Plate XLV. enlightens a fquare board $c d$, with a given quantity of light, at twice the diftance, that light is divided into four, fo on each of the four parts there is but one fourth part of the light, as on $c d$, each of the fquares being of equal fize. At three times the diftance there is butone ninth on each fquare, as on $c d$; and at four times the diftance there is but one fixteenth of the light on each fquare, as on $c d, \& c c . \& c$. Light, therefore, diminifhing in this proportion, it is impoffible that the light of our fun fhould reach fo far as the fixed ftars, and be from them reflected back with that amazing luftre with which they fhine. If then they do not fhine by borrowed light, as our moon and the planets do, they muft fhine, as our fun does, by their own inherent light, and, by analogy, be funs themfelves. But if they are funs, by the fame analogy they muft be deftined for the fame noble purpofe as our fun; to give light, heat, and vegetation, to various worlds that revolve round them, but which are infinitely too remote to be perceived by us, though affifted by our greatly-improved telefcopes! How much too vaft for the human mind is this idea! But the idea muft be carried ftill further : for we fee every particle of our globe fwarm with life and animals; and can we fuppofe fuch bodies as compofe the reft of our fyftem made for nothing but for mortals to gaze at? They turn as regularly on their axes, and perform their annual revolutions, with equal precifion as our earth. Many of them have fuminer and winter, fpring and autumn, as well as the earth; and three of thefe planetary worlds abound with moons to affift their light. Do not thefe fimilar attributes imply a fimilar ufe with that of the earth? and that we may conclude thofe worlds to be inhabited ?

The analogy goes ftill further. We fee our fun turn on his axis. The fixed fars Algol, β Lyra, δ Cephei, n Antinoi, 。 Ceti, \&c. * are known to turn in like manner, by their growing periodically darker and brighter, in ftated times. Muft not thefe revolutions be for the purpofe of throwing off centrifugal light to the worlds that furround thofe funs ; caufing their motions, and diffufing allchearing light through fpace?

Aftronomers divide the heavens into three regions-a northern and a fouthern hemifphere, and the zodiac. Stars of various magnitudes are feen in all thefe regions, and are claffed into conftellations of variety of figures, as men, quadrupeds, fifh, \&c. Thefe figures are faid to have originated with the ancient Chaldeans, or Egyptians; but fome of them being found on the ruins of pagodas and oblervatories in Hindoftan, they feem, like moft other fciences, to have fprung from the Eaft. The Egyptians were remarkable for their hieroglyphics, and allegories. Poverty in language, always begets poetry. Where there are not words to exprefs ideas, mankind have recourfe to allufion, to allegory, and fymbols. Of that defcription are the figures we find on ancient charts of the heavens; and which are copied on our celeftial globes. The idea was grand and ingenious! The tenets and myfteries of a mythology were thus regiftered upon the face of the heavens; a book, eternal (to our ideas at leaft), and that all mankind could fee. The Greeks, ftruck with the magnificence of the idea, difplaced many of the Chaldaic con-

* Algol revolves in three days; β Lyra, in five days; δ Cephei, in fix days; η Antinoi, in feven days; O Ceti, in 331 days; Hydra, in 394 days; the bright ftar in the neck of the fwan, in 497 days; α Hercules, fixty days. This periodical diminution of light and difappearance, with the re-appearance and augmentation of light, in many of the fixed
ftellations, and inferted much of their own fable and poetic theology : hence we find Hercules, Perfeus, Caftor, Pollux, \&c. \&c.

Many ftars of remarkable magnitude have names befide the conftellations of which they make a part; many of which were given by Arabian aftronomers, as Aldebaran, Markab, Fomalhaut, $\& c$. which are ftill retained on our globes. Thefe conftellations anfwer a convenient end, in the ufe made of them by modern aftronomers; they form a contour or outline, become a kind of demarcation, by which every fpot in the heavens can be called by a feecific name; and by Bayer's Letters, every ftar capable of being feen by the naked eye has a diftinct name. The largeft apparent ftar in a conftellation has the firft letter of the Greek alphabet placed before it ; the fecond in fize, the fecond letter, \&c. ; fo that though this alphabet is repeated over and over again, yet, being in different conftellations, the ftars have each a different name. I fee α in Orion, and α in the Twins; I call one Alpha Orionis, and the other Alpha Geminorum, \&c. Hence, if a comet, or any ftrange phenomenon, appeared in the heavens, I could write to my correfpondent in China, and direct him to the fight of it, as well as if I pointed it out with my finger.
ftars, is referred to fpots on their furface. Some have thought it might be explained by fuppofing them of a difcoid figure, like a plate; fometimes turning their flat, and at others their narrow and fharp, fide towards us. Either fuppofition equally connects itfelf with that of a rotation on their axes, to account for the effect.

Nortbern Confeellations.

Soutkern Conftellations.

Confellations of the Zodiac.

	Confteliations.			Ėnglifh Names.				Remarkable	Stars.			Mag.
r	Aries	-		the Ram	-	-	-	α Arietis	- -	-	-	2
8	Taurus	-		the Bull	-	-	-	Aldebaran	-	-	-	1
II	Gemini	-	-	the Twins	-	-	-	Caftor and	Pollux		-	1, I
${ }_{0}$	Cancer	-		the Crab								
Ω	Leo	-		the Lion -	-	-	-	Regulus	- -	-	-	1
\%	Virgo	-		the Virgin	-	-	-	Spica	- -	-		I
\bumpeq	Libra	-		the Scales	-	-	-	a Librie	- -	-	-	2
	Scorpio	-		the Scorpion	-	-	-	Antares	- -	-	-	1
1	Sagittarius	-		the Archer	-	-		ε Sagittarii	-	-	-	2
以	Capricornus	-	-	the Goat								
	Aquarius	-	-	Water-carrier								
x	Pifces	-	-	the Fifhes								

When we look on a celeftial globe, at the fymbols in the above table, and we find them not to agree with the animals they are meant to reprefent-i. e. that the fymbol r Aries is forty degrees behind the ram, which it reprefents; Taurus, the fame; and fo on through the twelve figns-the young aftronomer would be confounded for a reafon, if he were not previounly acquainted with the preceffion of the equinoxes (fee page 15). This very extraordinary effect, viz. that the fum fhould crofs the earth's equator $50^{\prime \prime}$ of a degree earlier every year, than in the preceding year, and fo, that the equator fhall cut the ecliptic a whole degree retrograde in the courfe of feventy-two years, makes it neceffary to have celeftial globes renewed, at leaft, every feventy-two years; as the longitude of the ftars (in the zodiac particularly) would, at this time, be a degree wrong on a globe made feventy-two years ago, as well as a fmall matter wrong in declination. For longitude being eftimated from the firft point of Aries, to the place where a line from the moon or ftar would cut the ecliptic perpendicularly, and a perpendicular let fall from the moon or ftar on the celeftial equator

ASTRONOMX.

I N D E X:

And an Explanation of Jucb uncommon Words, as occur in a Work of this Nature.

A.

ABERRATION of ligbt, what, 77, i. 232, ii.
Abjorb, to drink in, 30 , i.
Abforbent veffels, their action, 47, i.
Acceleration, a body moving fafter and fafter, 79, i.
Acids, have a four tafte, and effervefce with alkalis, 142 , i.
Acromatic telefoope, a refracting telefcope that magnifies objects without prifmatic colours, and how, 133, ii.
Action and reaction, are equal and contrary, 91, i.
Adbefion, a fticking together.
Affinity, relationfhip, liking, attraction, the tendency which fome parts of matter have to unite with other parts, in preference to all other kinds of matter, $33, I_{53}$, i. Same as the attraction of cohefion. Table of affinities, 159, i. Affinity of light to certain bodies, 95 , ii. Affinity of metals, 18 r , i.
Air, a thin fluid encompaning our globe, 225. Its refiftance, 44. Its elafticity proved, 227, 228. Its weight and preffure, 230, 244. Difolves water, 232. Water diffolves air, 233. May be forced through wood, 243. Its weight eftimated, 244. How contaminated by breathing, 249. Of what it confints, 254. Air-piftols, 264. Air-balloons, 268. Vitiated air, what, 273. Air in mines, 280. Fatal to animals, 251. Air-gun, 295. Air-pump, 227. Air a conductor of found, 272 . Neceffary to inflammation, $264, \mathrm{i}$.
Aix-la-Chapelle water, its properties, I49, i.
Alcobol, ardent fpirit, 20I. Burnt, produces water, 220, i.

INDEX.

Alembic, what, 210, i_{0}
Alkali, faline matter, that combines readily with acids, 144. Alkaline air, 285, i.
Alloy, in metals, how detected, $325, \mathrm{i}$.
Ammoniacal falts, 172 , i.
Analogy, likenefs, of the fame nature.
Anamorplojes, what, and how produced, 19, ii. Bodies diftorted by cylindrical mirw rors, $i b$.
Angle of incidence and reflection always equal, II2, II4, ii.
Animal analyfis, 204, i.
Animal beat, how produced, 34,273 , i.
Anomaly, what, 2, i. 173, ii.
Antagonif principles explained, $18, \mathrm{i}$.
Antimony, its properties, 195, i.
Apertures, holes for delivering water. Laws of their fpouting, 3 I6, i .
Aplolion, greateft diftance of a planet from the fun, 171, ii.
Apogee, the greateft diftance the fun or moon is from the earth. Sun's in gth degree of σ.
Apples, cyder, perry, \&cc. 202, i.
Apjides, 179. Line of, what, 172, ii.
Aqua regia, 13r, i.
Aqueous bumour, a thin tranfparent fluid that fills the face between the cornea and cryftalline of the eye, $124, i$.
Arbor Dianc, filver-tree, 155,183 , i .
Archimedes's forequ-punp, 347, i.
Ardent fíirits, 201, i.
Argillaceous earth, clay, $174, i$.
Argonautic expedition explained, 249, ii.
Aroma, the volatile effence of plants, 217, i.
Arfenic, its properties, 194, i.
Aftrology, its origin and falacy, 147 , ii.
Aftronomy Lecture, 147.
Affronomical day begins twelve hours later than the civil day, viz. at noon.
Atmofphere, what, 254. Its colour. Formed of terreftrial materials diffolved in folar fire, 272,286 , i.
Atoms, the original particles of matter, $38, i$.
Attraction, the tendency one part of matter has towards another, $32,33,34,40$. Independent of the weight of the atmofphere, 41 . Is the fame as affinity, $37,143^{\circ}$ Attraction of cohefion, what, $43, \mathrm{i}$.

IN D EX.

Aurore borealis, northern light, how produced, $66, \mathrm{i}$
Axis, an axle on which any thing turns.
Axle in peritrocbio, wheel and axle, a capftan, a large and fmall wheel in one piece, and on the fame axle, 98 , i .
Azote, the noxious part of the atmofphere.-Poifonous air.

B.

BALLOONS, 269, i.
Barometer, theory of, 240. Heights of mountains found by it, 230 , i.
Barytes, ponderous Itone, $176, \mathrm{i}$.
Bath ruater, analization of, 147 , i.
Battering ram and balls compared, $88, \mathrm{i}$.
Benzoin, fublimed, 15 I , i.
Bifmuth, its properties, 194. White paint for the complexion, ib. A pigment that turns the hair black, 195, i.
Bifextile, or leap-year, why different from other years, I73, ii.
Black-lead, Plombago, 197, i.
Bleacting compound, 169 , i.
Blood, its properties, 205. Why of a red colour, 207, i.
Boats, moving againtt a ftream, 349, 350. To clean the bottoms of rivers, 350 , i.
Bodies, turn black before they enflame, 92, ii. Colour of bodies is the coloured light they reject. All bodies capable of three ftates, folidity, fluidity, and gas, $49, \mathrm{i}$. Bodies that roll upwards, 85, i.
Boiling, produced without fire, 214 , i.
Bones, confidered as levers, 96 , i.
Brandy, how produced, 201 , i.
Breatbing, how performed, 249, i.
Britifs coin, its ftandard, 184 , i.
Burning, what, 16ı, i.

C.

CALGAREOUS EARTH, lime-ftone, marble, chalk, \&c. I73, i.
Calcination, reducing metals to a calx by fire, 152 , i.
Camphor, what, 199, i.
Caloric, fuppofed that elaftic fluid which produces heat, $23, i$. The antagonift of attraction, ib.

1 NDEX.

C.antar, what $15_{q}, \mathrm{i}$.

Car, metals degrived of cheir intammable principle, 25:. How seduced oo a nectalic fite, 1-2, $102,101,252$, i.

Cacton's efiseros, how affeled by lighe, $3: 0$, i.

 Inveriely as the fquares of cheir diameters, to, i. The cante of anmai and reserable fecreson, AR.
Casiam, what, ço, I.
Corrigen, how their draushe is cithmated, 40 , i.
Cartar, charcoal, $=31,=5-1$.
Conar.. $\%$, a difate in the crytaline humour, which readers it opaque.
Cuayorion, suctrine of redected light, Ite, ii.

Coeste of Enatity, a poine un which a bady will reft impended in all directions, $E_{\text {f }}$. How found, E5, i.
Cour? sf Erseot, hetmeen the earth and moon, IOT, ii.
Corifasi, my thins tending to fly off in a Itraight lise, 207 , i.

C:-tripal, any thing condiag womats a centre, 20%, ii.
C. utro sisllation, what, s_{3}, i.

Cammial artarates, defribed, =10. i.
Couger, if 1 . The :ew doctrimes examines, $16_{2}, 1 S=, i$.

Carsaiks, a coas of the eve, 122 , ii.
Coramet, dates of events, and how mmfed by aftromomy, 14 , ii.
Cimaing, cre of mercury, 153, i.
Chet why Ecmetimes too fant, and rometimes too flow, 169 , ii.
Catio of matter, the tondency is partices have to fick together, 30, i.
Cait, its properties, 194. i.

Cabl, how prowiuced, 30 . By eraporation, 237 , i.
being the declination, it is evident, on a bare infpection of the globe, that both the longitude and declination of the ftars muft be perpetually moving towards the weft, or in the contrary order of the figns.

Some fay that Aries is the golden fleece, fetched by Jafon from Colchis, and that in memory of the Argonautic expedition, it was placed in the moft diftinguifhed part of the heavens, where the equinoctial point was at that time; and then Aries and its fymbol r were together, as well as the other twelve figns. If fo, we may calculate how long it is fince the Argonautic expedition took place: for if the equinoctial point has gone back forty degrees from the fars that form the conftellation Aries, and each degree require feventy-two years, then 72 multiplied by 40 gives 2880 years fince Jafon failed acrofs the Black Sea, to fteal the woollen manufactory, and bring it into Greece; for, I fuppofe, this is the plain Englifh of that celebrated expedition.

Others make the ram and the bull emblems of the feafon when fheep and cows bring forth their young. The bull Apis was worfhipped by the Egyptians. The twins, Gemini, were originally two goats; May being the feafon when thofe animals are born, and when the fun is in that fign. Cancer, the crab, is an animal that creeps backward, and is fymbolical of the fun's leaving the northern tropic, at the fummer folftice, and drawing back towards the fouth. Leo, the lion (called the fourth fign), reprefents the fury and heat of the dog-days. Firgo, the virgin, an Egyptian peafant originally, with an ear of wheat in her hand as an emblems of harvef: for the fun is in that part of the heavens at that feafor. Iibra, the balance, prefides at the autumnal equinox, and aptly reVOL. II.
prefents the medium, or balance, between the heat and cold, long and fhort days, \&c. of winter and fummer. Scorpio, the fcorpion; autumn affording the caufe of diforders by the abundance of its fruits: this unhealthy feafon is faid to be typified by this venomous reptile fpreading out his long claws, and brandifhing his tail, as if triumphing in the mifchief he can do, and has done. Others fay, this noxious animal infefts Egypt upon the fubfiding of the Nile, and thence became a conftellation. Sagittarius, the archer, reprefented by an arrow, denotes the feafon for hunting. Capricornus, the goat, implies the return of the fun from his fouthern limit, and climbing up towards the north, as the goat afcends the mountains. Aquarius (a figure pouring out water on the earth) denotes the wet, uncomfortable time of winter : and water being a pabulum of fifhes, and winter the time when all kinds of food is fcarce, Pifces, the two fifhes tied together, give intimation of the neceffary feafon to have them fo caught.

The fymbols by which thofe figns are reprefented, bear an awkward likenefs to the animals themfelves, or parts of them, as, r Aries, the two horns of a ram.
४ Taurus. Is it poffible that the two horns, and the face of a bull, could be reprefented by this figure?
II Gemini ; two fimilar lines may, indeed, be like twins.
\because Cancer. I fuppofe this fymbol is meant to convey an idea of the twifting fidewife motion of the crab.
\& Leo. Can this be intended for the hip and tail of a lion?
以 Virgo. What this figure has to do with a virgin, or ears of wheat, is beyond my comprehenfion; yet the figure is faid to reprefent three ears of wheat.
\bumpeq Libra. This, no doubt, is intended for a fcale-beam.
m Scorpio. Can this be meant to reprefent the many feet and the fting of the fcorpion?
4. Sagittarius. An archer muft have arrows.
is Capricorn. Why a V and an S fhould reprefent a goat, I am neither antiquarian nor aftronomer enough to make out; except, indeed, they reprefent his crooked horns.
\approx Aquarius. This I fuppofe is the waves of water. The original fign (the water-carrier) is fill ufed on the continent.
※ Pifces. The two femi-circles are to reprefent two bent or ftruggling fifhes, tied together with the ftroke that croffes them.

The fymbols that reprefent the planets are of the fame character as thofe of the figns.

Mercury. This figure is the caducius of Mercury, i. e. fhould reprefent two ferpents twifted in oppofite directions round a fceptre.

- Venus. This figure is faid to be her looking-glafṣ.
* Mars. The God of War, has his fpear and fhield united into this figure.
44 Jupiter. Probably the thunder wielded by the god.
I Saturn. This fymbol is meant for a fickle or fcythe, for Saturn was frequently reprefented as time.
If Herfchel, the initial of the difcoverer's name.

```
FINIS.
```


ASTHONOMY.

EIECTRIGITY:

EJJIE CTRICITY。

O卫TICS.

INDEX.

Collateral, lying fide by fide.
Collur of leathers, a fmall round brafs box, clofed, and filled with leather, through which a wire can pafs without fuffering air or water to pafs.
Collifion, friking.
Colour. How produced, 9 r . Tranfmitted and reffected differently by the fame medium, 9r2. Colours rejected, 93, ii.
Combuffion, burning, 160,257 , i. 95 , ii.
Comets, opinions concerning them, 237, ii.
Compound forces, 79, i .
Comprefs, to fqueeze together.
Concave lenfes, why they diminifh objects feen through them, 87 , ii.
Concave mirror, why it magnifies the face that looks in it, II5, ii. Why it paints images as if hanging in the air, rab, ii.
Condenfe, to bring or force the parts of matter clofer together.
Conducting pipes, their laws and ufe, 342 , i .
Conductors of beat, 27 , i.
Configuration of 'Iupiter's fatellites, 230, ii.
Congelation, freezing of fluids in their approach to a folid ftate.
Conffellation, feveral ftaro included in an imaginary figure, 161. The names of thefe figures, $1 \sigma_{2}$. Zodiacal conftellations do not agree with their fymbols, 16_{5}. The meaning of their figns or fymbols, 248 , ii.
Contact, touching.
Contrate rubeel, having its cogs on its fides.
Converge, drawing towards a point.
Convex'lenfes, why they enlarge objects feen through them, 85 , ii.
Convex mirrors, why diminifh objects feen in them, II 4 , ii.
Copper, its properties, 191. Precipitated by iron, 392, i.
Cornec, the round part in the front of the human eye, 122, ii.
Corrofive fublimate, what, $186, \mathrm{i}$.
Crane, to raife weights, 99. Its power, how calculated, 107, i.
Crome or Siphon, theory and ufe of, 338,330 , i.
Ciny.llizetion, the various angular forms which falts, fluors, metals, \&ic. afiume in going out of a fluid into a concrete or folid form, 50, 15 I . The above cryitallization in falts will not take place without a little water, called zuator of oryallization, I52, 2:7, i.
Cuirents, that of Florida, 203. That of Gibraltar, 204, ii. YOL. 11.

I N D E X.

Cyder, how got from apples, 202, i.
Cylinder, like the rolling-Itone of a garden.

D.

DECANTER, why feen filling when it is emptying, II 5 , ii.
Declination of " ftar, what, 167 , ii.
Decomposition, taking bodies in pieces,' 178 , i.
Defects of ruleel-carriages, 130 , i.
Denfity, compactnefs, clofenefs.
Diagonal, a line from the oppofite corners of a fquare, 80 , i
Diameters of the planets, 216 , ii.
Diameter of each of the planets, 216 , ii.
Diatonic fcale of mufic, its conformity with the feven primitive colours in a ray of iight; 90, ii.
Digefor, for making foups, \&c. 209, i.
Dioptrics, the effects that tranfparent mediums have upon the light that pafles through them.
Dipping needle, a balanced bar of fteel, when it becomes magnetized, lofes its balance and dips towards the earth, $57,7 \mathrm{I}$, i.
Diftances and magnitudes of the fun and planets, 210,212 . How found, 2I3, ii.
Difances, learnt and judged of by practice and obfervation, 82, ii.
Difillation, a feparation of volatile parts from bodies by heat, 149. Diftillation per defcenfum, 195, i.
Difilier's crane, 339, i.
Diverge, to fpread out.
Diver's bell, its conftruction and ufe; 131. How fupplied with air, I32. Fifh affemble round it, 133, i.
Divifibility of matter, fuppofes matter capable of infinite divifion, 37 , i.
Draught, of carriages on different kinds of roads, II7, 128. Line of, 122. Draughis. how calculated, 529, i.

E.

$E A R$, how formed, 303, i.
Earth, receives its diurnal and annual motion probably from the centifugal impulfe of

Tight, 4 and 6 , i . Its diftance from the fun, a balance between that repulfion and gravity, 6 , i. Why it moves unequally in its annual journey round the fun, 7 , i. Earth's furface combuftible, 95 , ii.
Earth, ancient opinions concerning it, 148 , ii. Reafons for its being a globe, 76 , i. 149, ii. Reafons for its being an oblate fpheroid, 150, ii. How meafured, 151, ii. How reprefented, 15^{2}, ii. The earth's whole furface its general top, I53, ii. How day and night takes place, 154 , ii. Diurnal and annual motion, what, and how the feafons are produced, 155, ii. How proved, 159, ii. Earth's axis inclines, $23^{\frac{1}{2}}{ }^{\circ}$ from a perpendicular to the plane of its orbit, and moves parallel to itfelf, 159, ii. Earth, by moving unequally, yet defrribes in fpace equal areas in equal times, 9 , i. 170, ii. Moves round the centre of gravity with the moon, 192, ii.
-, a bad conductor of either heat or cold, 238. Parent of the atmofphere, 254, i.
—, calcareous, I 73 , i.
——, filiccous, 174 , i.
—, argillaceous, 174 , i.
-, magnefian, 775 , i.
—_, zeolites, 176 , i.
—., barytes, or ponderous earth, $1, \frac{7}{}, \mathrm{i}$.
-, granate, $176, \mathrm{i}$.
Earths, 172. Perhaps but metallic oxyds, 222. Richeft that produce moft inflammable air when diftilled, 216 , i .
Earthquakes, 360, 385, i.
Ebbing and flowing fprings, 338, i.
Ebullition, boiling.
Eclo, what, and how produced, 298. Echo in the dome of St. Paui's, 299, i.
ficlipfes, how occafioned, 177. Their limits, 180. How calculated, 181. Why eclifpes are not more frequent, 18 I . Why one half of an cclipfe takics up more time than the other, 192, ii.
Fclipfes of \mathcal{J}^{\prime} upiter's fatellites, 22.9, ii.
Ticliptic, the carth's annual road round the heavens. Latude and longitude of the planets and ftars eflimated upon, and from, it, 16_{7}, ii.
F:ghuvium, fine particles, that fly off from various bulies, 52 , i.
Figgs, their properties, 208, i.
Elafticity, fpringinefs. That quality in bodics by which, on being bent or comprefied, they fpring back, or refume their original form and tenfion, 91 , i.

1 NDEX.

Eifacicity, 1. Its antiquity and derivation, 1. The principle of Light and Five, as deduced from its appearances, motion, and power, 2. Its Motion, 2. Its Power, 5. Metals calcined by it, 6. Promotes the growth of vegetables, 6. Ignites combuftiblcs, and Canton's phofphorus, 7. Why more lightning in the torrid than in other zoncs; in fummer than in winter, 9 . Why in air it flould be light, and in the earth fire, Io. Eleatical machines, II. Electrics and non-electries, what, 3. Electric affinities; its attraction and repulfion. Conductors and non-conductors, what, 14. Of points, 16. Electrieal orrery, 18. Electric repellency, 21. On the Leyden phial, 24. Spontaneous electricity, 31. Effects of fulphur, vapour, finoke, and flame, on electricity, 32. Of lightning, 34. Of animal elcetricity, 42. The eel, torpedo, frog, \&c. 43. Galvanic electricity, 44. Electrophorus, 46. Mifcellaneous experiments, 5I. Shewing the courfe of electric fluid, 5 I. The electrieal attraction and repulfion, 52. The electric fpider, 52. Condenfed and rarefied electricity by the double jar, 53. Ule of thunder rods, 54. Explofions, 54. Further theory of the Leyden jar, 55. The efforts made by condenfed and rarefied electricity to meet, 56. Electricity gives bulk and inflammability to air, 58. It affifts the rife of vapour, 59. Caufes tranfarency, 62. How it may reprefent woods, trees, \&xc. σ_{3}. Inereafes the cireulation of the blood, σ_{4}. Electricity vibrates like othe: fluids, 66. It choofes the neareft road and the beft conductors to reftore its equality, 67. The fluid has a natural tendency to the earth, 69, ii.

Electrometer, an electrical gage.
Ellipfe, an oval.
Eolian barp, caufe of its wild notes, 301 , i.
Eolipile, what, 2I, i.
Eplemeris, an almanac, 9, i .
Epfom falts, 156 , i.
Equal areas, are defcribed in equal times by the planets, 200, ii.
Equation of time, $1 \tilde{r}^{2}$, ii.
Equilibrift, his difficulties, 86, i.
Equinoxial colure, a eirele of the fphere paffing through the equinoxial points, and through the poles of the equator, 167 , ii.
Equinoxial tides, 192, 197, ii.
Lifintial cil, the volatile, or odorous oil of plants, 199, 217, 418. i. When concrete, how apparently alive, 103 , ii. How derived from light, 104 , ii.
Etber, makes common air inflammable, 279 , i.
Eudiometer, an inftrument for meafuring the purity of air; fee Nitrous Air.
Evoporation, what, 234,235 , i. How feen, 236,237 , i. Cold produced by it, 237 , i.

I NDEX.

Affifted by heat and electricity, 238 , i. How it takes place in vacuo, 236 , i. Increafes as the quantity of furface, 237. Moft in March and April, 236, i. Why fo great in the Mediterranean, 204, ii.
Exparifion of metais, 19, i.
Experiments on coaches, carts, \&cc. 130, i.
Extinguifping engines, 349, i.
Eye, its form, 122. Its defects, and how cured, 127, ii.

F.

FALLING furs, what, 260, i.
Falling bodies, -77. Their force, how computcd, 79, 89, i
Fat, its properties, 208, i.
Fellies, the pieces that form the rim of a carriage wheel, 130 , i.
Fermentation, an inteftine motion, by which fixed air is extricated. The method ufed by nature to decompofe organifed animal and vegetable bodies, and feparating their principles, 200, 202. How ftopt or prcvcited, 204, i.
Fibre, a fmall thread.
Ficry dragon, 170, i.
Filtration, fqueezing or onzing of a mixt fluid through a cloth, leather, paper, \&cc.
Fire, its repulfion and other qualities proved by various experiments, $15,16,17,18,19$, 24, i. How capabie of producing both heat and cold, 24, 31, i. How conducted, 27 , i. How overcome, 166 , i. Derived from the fun, 2, i. 94, ii. Cannot burn without air, 97, ii. Has, in a concave mirror, the fame effect as light, 112 , ii. Squeezed out of bodies, 31 , i. Firc and light the fame, 3, 141, 158, i.
Fijh, live longeft in that water which is beft for human ufes, and are, therefore, a good cudiometer. Fixed mincral alkali, I44, i.
Fived fars, conceived as funs, 94. Their number, how eftimated 241. Why they twinkle, 242. A guefs at their diftance, $i 6$. Turn on their axes, 243. Have particular conftellations and names, 245 , ii.
Fixt air, carbonic acid, 28 r . Food of plants, 258. Aërial acid, 28 I . Λ confituent part of chalk, marble, fhclls, \&cc. 28 I . How expelled from, and united to, bodies, 283. Pyrmont water, 282. Its antiicptic propertics, 283, i.
Flaccid, lax, loofe, flabby.
Flame, probably folar light let loofe from combutible bodies, $9^{2}, 98$, ii....
Flef3, its propertics, 209, i.

INDEX.

- Tiuors, foft, tranfparent, fparry lind of mincral concretions, found in mines. Fhor acid air, 285. Diffolves glafs and engraves it, 285, i.
Focal diffances, in proportion to apertures, 134, ii.
Focus, of a lens or mirror, the place where the rays mcet.
Forcing-pump, 347, i.
Fraxinelin, a plant furrounded by inflammable air, 260, i.
Friction, rubbing, chafing, wearing away, ro6. Friction wheels, 89, I3 f, i.
Frigirific, chill, or caufmg cold.
Fulcrum, the prop, centre, or fupport, on which a lever turns, 93, i.
Fulminativg poredor, 167, i.
Furnaces, what, and how ufed, 2 II, i.
Futchel, the lever by which the forc-wheels of a carriage are turned, and into which the pole is inferted, 123, i.

G.

GALLIC acid, 144 , i.
Galilecnn telefrope, its theory and ufe, 229. Why now made an opera-glafs, 230, ii.
Galvanic electricity, 362 .
Gas, vapour, air, fine particles diffolved in fire, 29, i.
Gaftric juice, its power and ufe, 204, i.
Gauge, for an air-pump, a glafs tube open at the end, which forews into the pump-plate, and fhut at the other : it is bent into three parallel fides, and the fhut part is filled with quickfilver.
Georgian píniket, its diftance, motion, moons, and character, 236, ii.
Ghofts and apparitions, how imperfect fight may have contributed to their formation, 127 , ii.
Glafs, how colourcd, 196, i.
God, his perfections and attributes recognized in his works, $\mathbf{1} 48$, ii.
Gold, its properties, 8 r. How its adultcration may be detected, 326, i.
Golden flece, Aries, what is meant by it, 249, ii.
Granite, a compound ftonc, 177, i.
Grafs, why green, ior, i.
Gravity, attraction of, its weight, or the tendency which all matter has towards the centre of the earth, 75 .
Greek alpbabet, how ufed to name the ftars, I6I, ii.
Green ink, that appears by heat, and difappears by cold, $218, \mathrm{i}$.
Grotto del Cano, famous for producing fixt air, 258 , i.

I N D E X.

Gum-Benzoin, 15 I, ii.
Gums, mucilage of plants, 200 , ii.
Gunporwder, what, 167, ii.
Gutla ferena, an infenfibility of the optic nerve.

H_{H}

HAIL, how formed, 240, ii.
Harduefs, of the particles of matter, $38, \mathrm{i}$.
Harveft moon, its caufe, 190, ii.
Harrozugate quater, analyzation of, 149, ii.
Heat, in an active and latent ftate, 18, 213, i. Expands all bodies, 18, i. How bodies abforb it, 25 , i . Heat, in extreme, produces the fame fenfation as extreme cold, 2 i 8 , i. Heat, by vitriolic acid and water, 265 , i. Heat loft diminifhes bulk, 213 , i. Heat, from croffing light, 100 , ii.
Hemippere, half a globe.
Hermetically fealed, tube clofed of melted glafs.
Hiero's crooun, 325 , i.
Homberg's pyropboris, 17 I , ii.
Homogeneous, alike, aflimulating union.
Horizon, the boundary, where the flyy feems to touch the earth or fea.
Horfe, his power of draught, 108. Thofe powers how beft applied, in6. Horfe, how confidered as a lever, II7, i.
Hydraulics, hydroftatic principles applied to mills, engines, pumps, \&cc. 333. Law of difcharging apertures, 335. Conducting pipes, 342, i.
Hydrogen gas, inflammable air, 259, i.
Hydrometer, ufe of, 3 I9, i.
Hygrometer, an inftrument by which the moifture or drynefs of the air is eftimated, 242 , i. Hydrofatics, doctrine of fluids, 307. Swimming, 308. Hydroftatic prefs and bellows, 310. Paradox, 312. Law of fpouting pipes, 315,336 . Hydroftatic balance, 325 . Hiero's crown, 325, i.
Hypothefis, a fuppofition.

I.

7AMES's Poruders, 195, i.
Tre, exhibits both heat and cold, 34,222 . Brings water to its own temperature, 29 . Not heated over a fire, 30. Ice creams, 30. How preferved in ice-houfes, 39 , i. Ignition, fpontaneous, $169,170,189,197,214,260, \mathrm{i}$,

INDEX.

Inmare, to plunge or dip any thing in a fluid.
Impel, to drive onwards.
Inpetus, a flroke, or momentum, from a fwiftly moving body.
Incidence, a falling or lighting on, I12, ii.
Incomprefible, not capable of being fqueezed into lefs compafs.
Inclination of the orbits of each planet, 216, ii.
Inclined plane, a floping plane, like the tiles on a houfe; an even hill; a fmooth declivity, 104, i.
Indicative barometer, 24 I , i .
Inertia of matter, its fluggifhnefs, or tendency to continue in the fate it is in, whether of reft or of motion, $38, \mathrm{i}$.
Infammable nir, the parts of animal, vegetable, or mineral fubitances, capable of an aëriform ftate, and that will inflame, $26 \mathrm{I}, 262,265$. How produced, 261. How, by electric fire and water, 266. Metals reduced by it, 268. Facts relating to it, 278. Metals (not water) afford its principal ingredient, 262. Other matters that afford it, 279 , i.
$I_{n k}, 144$, i.
Infulated, cut off, like an ifland; in electricity any thing fupported on folid glafs feet.
Intermitting Jprings, how caufed, 339, i.
Interfices, intervals, hollows, or intermediate fpaces.
Iron, its properties, 187. Burns like other combuftibles, 252. Revived from its calx or ruft, 108. Imbibes light, $9+$. Light, in prifmatic order, expelled from iron, by heat, 94 , i.
Irrigution, fpreading water over land, $346,347, \mathrm{i}$.
Fupiter, 4 , the planet, his magnitude, appearance, revolutions, and belts, 223, ii. His diftance, 14, i. Motion and cclipfes of his fatellites, 220, ii. Longitude, how found by them, 229, ii. Latitudes of his fatellites, 229, ii. How a configuration of them is made for every night in the year, except when Jupiter is too near the fun, 230, ii. How read in the nautical ephemeris, 23 I , ii. His retrograde and fationary appearances, 23 I, ii. His diameters, nodes, \&c. 233, ii.

K.

KEEPLER's grand law of central and centrifugal forces, 7, i. 207 , ii. Of the proportion of periodic times to the diftance of the planets, 212; ii.

INDEX.

I.

LACTEALS, capillary tubes, their action, 46 , i .
Lands, rife by cultivation, 97, ii.
Latent, quiet, dormant, hidden, inactive, 22, 23, 24, 26. Latent fire, what, 22,26 , 166. How made active, 254. Latent heat, what, 29, i.

Lateral, fidewife.
Latitude, of the planets, their greateft difance from the ecliptic, 12 , i .
Lavender-zuater, 199, i.
Lavoifier's new fyftem of chemifiry, objected to, 262, i.
Laws, of planetary motion, 205 , ii.
Lead, its properties, 190. How revived from a calx, 222. How made to fwim, 309 , i.
Leap-year, why different from other years, ${ }^{173}$, ii.
Lenfes, for optical purpofes, 87. Why they magnify, diminiflh, or invert objects, 86 .
How their power is proportioned to the apertures that contain them, 134, ii.
Lever, a bar, a crow, a poker, a hand-fpike, \&xc. 94, i.
Librations, of the moon, what, 189, ii.
Liganentum ciliare, radiant mufcular fibres furrounding the cryfallinc humour, 124 , ii.
Light, what it is; how formed ; its repellency, \&c. 2, i. Has a momentum or moving force, 4 , i. Confidered as diluted fire, 252 , i. How bodies dipt in light imbibe fome, and reject other parts, 94, 96, ii. Light croffing from one luminous body to another meets no interruption, 97, ii. Light may lie dormant for many years, and when put into action, burn and exhibit all the qualities of fire, 98, ii. Vegetables inftinctively feek light, 100, ii. Turn pale, and die, when deprived of it, IOI, ii. The furfaces of bodies reject or repel particular coloured light.-Newton's opinion of it, 102 , ii. Direct light, what, 93 , ii. How its impreffions laft and diminifh, after light is fhut out, 94, ii. Light unburns burnt bodies, 163 , ii. Light and fire, how differing, 266 , i. Jight united with vital air, their effect, 277, i. Light progreffive, 232, ii. Its velocity, 232, ii. Its aberration, 232 , ii. Diminifhes as the fquares of the diftance of the luminous body, 243, ii.
Lignumn nepbriticum, a wood of fingular properties, 102, ii.
Lime, revived to lime-ftone, 223. Its fertilizing quality, 216 , i .
Lime-fone, chalk, \&x. their calcination, 216 , i.
Limits, of eclipfes, 181, ii.
Liquor probatorius, that detects lead in winc, 214 , i .
Longitude, found by Jupiter's fatelites, 224, ii. How longitude alters in the 'fars, 248, ii.

Longitudinal, lengthwife.
Looking-glafes, II2, ii.
Luminous appearance of fy/b, 165 . Of fugar, 166. In vacuo, 167 , i.
Luna cornea, 172, i.
Lunar calculations, why fo difficult, 184, ii.
Lungs, their endeavour to throw out noxious matter, 273 , ia
Lymptatics, their action, 47, i.

M.

Mrgazine rvind-gun, 296, i.
Magic lantern, conitruction and ufe, 139, ii.
Magnefurn earth, ftone of a foapy greafy feel, 175 , i
Magnetifm, its attraction, 52. Its fuppofed relationfhip to electricity and effuvium, 52, i.
——, a fubtil effluvium, 55. Experimental proofs that it is fo, 58, 59. Magnetic poles, circuit, and conductors, 56. The earth a magnet, 57. Lightning; electricity, and a finart ftroke of a hammer, have produced magnetifm in iron, 59. Mifcellaneous obfervations, 6I. Magnetifm may be produced without magnets, 59. Without a magnet circuit, magnets lofe their attraction, G_{2}. Magnctic attraction and repul. fion, not affected by interpofing bodies, 63. Variation of the needle, 65. Relationfhip to electricity, 67. Magnetic poles of the earth, 68. Aurora borealis, 66. Dip-ping-needle, 57. Terella, 72. Magnetic amufements, 73, i.
Mabomet's coffin, 73, i.
Malt liquor, 202. Brewing, 203, i.
Manganefe, its properties, 196. How it produces vital air, 255 , i.
Mantures, how they act on land, 215 , i.
Marine acid, the acid of common falt, 143. Marine acid air, 284. Produces fal-am moniac mixt with alkaline air, 284, i.
Mars, of, the planet, his character, appearance, motions, and fpots, 222, ii.
Matter, every thing folid or fluid in nature, 36 . Its affections, 37, i.
Maximum, a force fo great, that more or lefs power would diminifh it, 121 , i.
Mechanic powers, are the lever, the wheel, and axle ; the pulleys, the wedge, the inclined plane, and the fcrew, $92, \mathrm{i}$.
Medium, means of conveyance.
Mercury, quickfilver, its properties, 385 . Its fublimate, $219, \mathrm{i}$.
Mercury, 多, a planet, his fize, motions, and attributes, 218 , ii.
Metallic-tree, 222, מ~

Metals, conduct electricity by the fire they contain, 72 , ii.
Metals, perfect and imperfect, 177. How formed and reduced, 17\%. Whence their ftrength and fplendor, 179. How adulterated, 327 , i.
M eteors, what, 259, i.
Mephitic, poifonous.
Microfope, fingle, its magnifying power, 136. Double or compound microfcope, its theory and ufe, 137. Solar microfcope, do. 137. Opaque, do. I 38 , ii.
Mill, its properties, 208. How made into wine, 203, i .
Mills, their power, how eftimated, 108, i.
Mines, why liable to take fire, or blow up, 280, i.
Minium, red-lead.
Minuteness, of the particles of matter, $37, \mathrm{i}$.
Mirror, a polifhed furface that reflects light, II2. Shews the whole perfon, though but half its length, II3. Deceptions by them, IIf, ii.
Mifellancous obfervations, in chemiftry, 212 , i.
Mixtures, producing heat and cold, $213, \mathrm{i}$.
Momentum, moving force of a body, 88 , i. Of light, 395 , ii. .
Monfoons, how occafioned, 292, i .
Montrolfier, a fire-balluon, 2бy, i.
Moon, 175. Shines by borrowed light, 176. Her phafes, 176. Her eclipfes, ${ }_{177}$ Her path and nodes, 178. Eclipfes in apogee and perigee, 179. Penumbral fhadow, 181. Synodical and fidereal revolutions, what, 185 . Keeps the farne face towards us, 188. Horizontal moon, 189. Harveft moon, 190. Tides, 192. Libration, 189. Longitude found by her, 226, ii.
Motion, proportional to its caufe, 205 , ii.
Mountains, attract, 76 , i.
Muriatic acid, or marine acid, 143, i.
Musfular motion, 96, i.
Muffic, how its notes conform with the refrangibility of light, 90, ii.

N.

NADIR, the point oppofite the zenith, or under foot.
Nautical epbemeris, its ufe in finding the longitude at fea, 230, ii.
Navigation, how affifted by aftronomy, 148, ii.
Nebulce, fmall fpaces among the ftars that appear of a dufky light, and as containing many fmall ftars.

I NDEX.

Needle, of the feaman's compafs, the fufpended magnet that points towards the north and fouth, 57 , i. Its variation, 65 , i.
Neruton, his opinion how light may unite with groffer bodies, 101, 205, ii.
Nigbt-glafs, a refracting telefcope, $I_{3} 0$, ii.
Nitrous acid, the acid of falt-petre, $143,156,172$. Nitrous air, how made, 270 . How a teft of the purity of refpirable air, 270. Nitrous vapour, what, 275. Abforbed by water, 275 , i.
Nitrois oxyd of azote, 277, i.
Nodes, places where the plane of one orbit croffes that of another, 177 , i:.
Nomenclature, a fyftcm of relative names.
Northcrn conffellations, their names and number, 246, ii.
Northern bemijphere, not fo hot or fo cold as the fouthern, 209, ii.
Nofe, how guarded to prevent infection, and the accefs of noxious particles, 274, io
Nucleus, a kernel; any thing about which matter is gathered; i2, i.
Numbers, that exprefs the proportional diftances of the fun and planets, 215 , ii.

O.

OBFECTS, inverted in the eye, 124. Why feen upright, 125 , ii.
Oblate, a globular figure like an orange, more in diameter acrofs than through, 155 i.
Oblique afcenfion, of a far, what, 168, ii.
Oblique forces, 80, i.
Obfacles, in roads, how computed, 90 , i .
Oils, vegetable, fat, or expreffed, 198. Oil of turpentine, 199, i.
Opaque, dark, that will not fuffer light to pafs through, 124, ii.
Opaque micriffope, 138 , ii.
Optical deceptions, 141, ii.
Optics, 75. Light is progreffive, 76, 232. Its aberration, 77, 232. Its momentums 78. Light dormant till put into motion by a luminous body, 79. Laws of refraction, 80. The eye learns diftances in air or water by experience only, 82. Heavenly bodies feen not where they are, 83 . Lenfes; the plano-convex, double convex, their effects, 84. Direct, reflected, and tranfmitted light, what, 85. Objects inverted by convex lenfes, and by the lens of the cye, 86. Converging and diverging rays, what, 87. Concave lens diminifhes objects, 87. Rays repulfed, 89. Prifm, and its effects, 89. Conformity of light and found, 90. Different fized particles of light, 91. Ab-

I N D EX.

forption of light, and the caufe of colour, 92. How light ficks to bodies, 94. Light a part of bodies, 95 . Sun's light not wafted, 96 . Direction in which objects are feen, 81. Light conftituent in the growth of plants, 97 . Animal and vegetable life, dependent on it, 103. Colours and fhadows 106, 144. Catoptrics, what, IIO. Repulfion, rio. Angle of incidence and reflection, 112. Concave and convex mirror, ${ }^{115}$. Anamorphofes, what, 118 . Vifion, 121. Diffection of the eye, 122. Defects of the eye, 127. Squinting, cataracts, \&cc.128. Optical inftruments, 129. Galilean telefcope, 229. Night-glafs, 130. Refracting telefcope, 131. Achromatic effect, 133. Reflecting telefcope, 134. Single microfcope, 136. Double ditto, 137. Opaque ditto, 138. Magic lantern, 139. Camera obfcura, 139. Experiments and optical deceptions, 14 I , ii.
O, bit, track of a planet round the fun, II, i. Inclination of the orbits of each planet, 216 , ii.
Ofcillation, centre of, is near the centre of gravity of the bob of a pendulum, 82 , i..
Oxalic acid, 144, i.
Oxyd, a calx, a metal deprived of its inflammability, $16 \mathrm{r}, 25 \mathrm{I}$, i.
Oxygen, the principle of acidity, is gas, 254 , i.
Oxygenated muriate of pot-a/3, $169, \mathrm{i}$.

P.

PARABOLA, the line a ball defcribes when fhot horizontally from a gun, 85 , i:
Parallactic angle, what, 212, ii.
Parallex, what, 210 , ii.
Partial eclipfes, what, 177 , ii:
P articles of matter, all of the fame weight, 44 , i.
Pendulums, 82. Vibrate flower at the equator than in England, 150, ii.
Perumbra, a fladow; 180, ii.
Percufion, collifion, a ftroke, 90 , i.
Perigee, neareft diftance of the fun or moon from the earth, 172 . Sun's in gth degree นึ, 174, ii.
Peribelion, neareft diftance of a planet. from the fun, $7,17 \mathrm{I}$, $\dot{\text { i. }}$
Perforate, to bore through.
Perry, diftilled from pears, 202, i.
Pheromenton, an appearance in nature.
Philofopbic wool, calx of zinc, 196, i.
Pblogifon, fuppofed to be fire united to fome unknown terreftrial fubfance, 141 , i.

Piooplorus, 168, i.
Photometer, inftrument for flewing evaporation.
Pinior, a fmall axle.
Pipes, fpouting, 3 I6. Pipes of conduct, 342 , i .
Pifor, fucker of a pump, a plug filling and fliding in a cylinder, $343,348, \mathrm{i}$.
Pitch, how produced, 199, i.
Planets, their motions probably produced by light or clectricity, 14, i. Newtonian laws of planetary motion, 205, ii.
Plants, feek out light, 100 , ii. Emit vital air, 250, i.
Platina, heavieft metal, 184, i.
Plumbago, black lead, its properties, 197, i.
Polarity of matter, the mode of arrangement which particles take, when paffing from the fluid to the folid ftate, 49, i.
Pores, fmall hollows, or interftices in bodies.
Pot-a/b, falts found in the afhes of vegetables, r99, i.
Preceflion of the equinoxial points probably occafioned by folar impulfe, 15, i. 248, ii.
Precipitation, a falling down of concrete matter, in the liquor in which it was diffolved, 152 , i.
Preponderate, to defcend, be heavier.
Preflure, of the air, 231, 232, 233. How much, 244. Of fluids, 314, i.
Prijm, its theory and effects, 89, 103, ii.
Projectiles, 79, i.
Pulleys, wheels with grooves round them, for ropes or chains to move in, 100, i.
Pump, cannot act in vacuo, 247 , i.
Pumps, common pump, 343. Late invented valves, 344,345 . Draining-pump, 345, i.
Pyrites, fire-ftone, 165, 221. Artificially formed, 221, i.
Pyrmont-zuater, analyzation of, 148, 258. How made, 282, i.
Pyrometer, an inftrument by which to meafure the expanfion by heat, and contraction by cold, in metals, \&c. 19, i.
Pyrophorus, by Homberg, 171, i. By Canton, 126, ii.

Q.

QUICKSILVER, how frozen, 24,27 , i.

R.

RADIANT, round, circular.
Rafts, their buoyancy calculated, 329 , i.

INDEX.

Rain, how raifed into the atmofphere, 234, 235, i. How it falls, 239, i. How imitated, 70, ii.
Rainborv, how formed by drops of rain, II8. A fainter bow, how produced, 120, ii.
Ramflen's eye-glafs, what, 133, ii.
Rarify, to thin, or make denfe matter weaker.
Reaction, always equal, and contrary to, action, 206, ii.
Reaping machine, III, i.
Reciprocal, mutual, relative.
Rectilinear motion, what, 207, ii.
Red light, the only part of light that can penetrate muddy or dark mediums, 33? 91, ii.
Reeve, to adjuft ropes to pulleys.
Reflecting telefcope, its theory and ufe, 134. Its power, how calculated, 135, ii.
Reflection, rebounding back, repelled, returned.
Rcfract, to incline, or bend.
Refracting telefope, the common fpy-glafs, I3I. How made. achromatic, 132. Its power calculated, ${ }^{3} \mathrm{O}$, ii.
Refraction, of fun or far, at different altitudes of the atmofphere, a table of, 228, ii.
Refrangibility, of a ray of light, its property of feparating into feven different colours, 91, 102, ii.
Repellency, the power of fire, in feparating or pufhing afunder the particles of all matter, 2, 16, 17, 33, 40, 226, 235, i. Repulfion of light, 89, ii.
Repulfive porver of fire, 21, 41, i. 101, ii.
Refervoir, a ciftern, or head, for a referve of water.
Retina, optic nerve, 123. Where infenfible, 124, ii.
Retort, what, 210, i.
Retrograde motion, of the planets, 212. How the means of finding thcir diftances, 213 .
A proof that the earth is a planet, 213 , ii.
Reverberate, to beat back, to echo.
Reverberating furnace, what, $211 \mathrm{I}, \mathrm{i}$.
Right afcerfion, of a ftar, what, 167 , ii.
Rope-pump, 347, i.
Rofe-water, 199, i.
Rotation, returning about.
Rotatory motion, round motion.
Rum, how produced, 2.00, i.

INDEX.

Kunning-Wlock, 102, i.
Ruff, how effected, how reduced, 188 , i.

S.

SALTS, every thing with a fharp tafte, and foluble in water, x72. Common, from falt rock and fea water, 156 , i.
-, epfom, magnefia united with marine acid, $\mathbf{1} 56$, i .
——, nitre, falt-petre, 156. This falt difolved with copperas in hot water, will cryftallize only with its own particles, 216, i.
-, luna cornea, 172, i.
-, verdigris, $172, \mathrm{i}$.
-, ammoniacal, 172 , i.
——, fugar, i_{72}, i.
\longrightarrow, pot-afh, ${ }^{1} 7^{2}, \mathrm{i}$.
Satellites of \mathcal{F} upiter, times of their revolution, 224, ii.
Saturation, being full, as when water has difolved falt, and is fo full it can diffolve no more, 15 I , i .
Saturn, his diftance, fize, moons, ring, \&cc. 53 I .
Scilly light-houfe, how conftructed, 141, ii.
Sclerotica, the outfide coat of the eyc, 122, ii.
Screw, an inclined plane wrapt round a cylinder, 105, i .
Seaman's compafs, how affected by heat, and the needle's variation, 6_{5}, i.
Sea-water, its analyzation, 150, i.
Secrete, to feparate, abforb, \&c.
Semen lycopodii, its properties, 218 , i.
Senfation, produced by mechanical inpreffions, 125 , ii.
Senfes, all but modifications of feeling, 125 , ii.
Senforium, feat of perception in the brain.
Sbadorus, of a different colour to the mediums through which the light paffes, IA4, ii.
Sheave, or Beaver, a fingle pulley.
Sbip, how the may pump herfelf, $340,341,342$, i.
Sidereal and folar year, why different, 168. Sidereal and folar time, how different, 369 . Sidereal revolution of the planets, 216 , ii.
Signs of the zodiac, emblematic of the feafons, 165 . Why they are diftant from their fymbols, 165 . Their names and characters, 166 , ii.
Siliccous earth, flint and precious ftones, $174, \mathrm{i}$.

INDEX.

Silver, diffolved and cryftallized, 182 , i.
Single-horfe-carriages, their defects, $135, \mathrm{i}$.
Sirocco, wind, how occafioned, $290, \mathrm{i}$.
Size, of balls, to fhew the proportional fize of the fun and planets, 215 , ii.
Skin and bones, their properties, 209, i.
Smeaton's pulley, 101. His diver's-bell, 333, i.
Smelling-bottle, what, and how formed, 212 , i.
Smoke, how it rifes, 322 , i.
Snow, how formed, 239. Protects vegetables, but does not nourifh them, 239 , í.
Soap, i99, i.
Soda, falts in the afhes of fea plants, 199, i.
Solution, a property in fluids whereby they mix, imbibe, or incorporate themfelves with folids, 146 , i .
Sound, what, how produced and conducted, 297, 303, i. Echo, 298, i. Speakingtrumpet, 300 , i. Speaking figures, 300, i. Thunder, 300, i. Gun, 300, i. Eolian harp, 301, i. Mufical ftrings, 302, i. Mechanical fympathy, 302, i. How conducted, 299, i. Sound deftroyed, 304, i. Travels, 298, 305, i. Sound different in different airs, 305 , i. Sound and light, how related, go, ii.
Southern confellations, their names and number, 163, ii.
Spa-zuater, analyzation of, 148, i.
Species, fort or kind.
Specific gravity, what, 3 19, 330. Of bodies lighter than water, 328 , i.
Spectacles, I36, ii.
Spiral, coiled round, like a rope on the ground.
Splinter-bar, the crofs-bar before a coach, to which the horfes are harneffed, 123, io
Spontancous fire, $169,170,189,197,214,218,260$, i.
Spots, on the fun, what are they fuppofed to be, 217 , ii.
Spouting-pipes, their law, 316,336 , i.
Spring of the air, 232 , i .
Spring-tides, how produced, 195, 196, 198, ii.
Squinting, how occafioned, 128 , ii.
Stars, how they fill the univerfe with light, 3, i. Order and number that can be feen by the naked eye, 164 , ii. Stars ufed in navigation, 164 , ii. How their longitude alters, 248, ii.
Steam-engine, Boulton's, 301. With cylinder within the boiler, 353, io
Steel, how made, 187, i.

1 ND EX.

Sublimation, raifing dry fubltances into gas by heat, 150 , io
Subterraneous, within the earth.
Suction, occafioned either by the weight or fpring of the air, 246. The mouth a natural air-pump, 248, i:
Sugar, 172, 201, i.
Sugar of lead, 222, i.
Sulphur, its properties, 193, i.
Summer half year, longer than the winter half, 172,209 , ii.
Sun, fountain of fire, light, and electricity, 2, i. 217 , ii. How thefe remain the fame, undiminifhed by time, 3 , i . How reprefented, 3 , i. Why the fun puts out a common fire, 3 , i. 214 , ii. No wafte in the fun, 214 , ii. Sun fometimes appears as if no farther off than the clouds, 143, ii. How his motion influences the earth and planets, 12, i. Both attracts and repels the earth, $16_{5}, 217$, ii. Affects its axis, and caufes the preceffion of the equinoxes, 165 , ii. Sun unequal in his apparent motion, 170 . How eclipfed, 177, ii. His fpots and revolution, what, 217, ii. Appears larger in winter than in fummer, 209, ii.
Swimning, 308, 322, i.
Symbols, or characters to reprefent planets or ftars, their origin and meaning, 244, ii.
Sympatbetic ink, 220, i.
Sympathy of founds, 302, i.
Syphon, its theory and ure, 337. Fountain, 338, i.
Syziges, or conjunctions of the moon, what, 184, ii.

T.

TABLE of affinities, 160 , i.
Tangent, ftraight line touching the circumference of a circle.
Tangible, capable of being felt or handled.
Tantalus's cup, 338, i.
Tar, how produced, 200, i.
Tartar, the effential falt of wine, 145,155, i.
Teans exploded, 118 , i .
Telefoopes, refracting, 131. Reflecting, 134. Achromatic, ${ }^{132}$. Galilean, 3^{88}, is.
Temperature, degree of heat contained in any body.
Tenacity, a clinging together.
Tonforn, Atretching, like a mufical ftring.

INDEX.

Terelld, a little globe of loaditone, 72, i.
Thames-ruater, analyzation of, $147, \mathrm{i}$.
Thaw, why fo gradual, 32, i.
Thermometer, an inftrument by which to meafure degrees of heat and cold, $19, i$.
Thraßbing-machine, 1 I 3 , i.
Thunder, what, and how produced, $38,300, \mathrm{i}$.
Tides, occafioned by the attraction of the moon, 192, 193. Tides in the air, 194. Spring and neap tides, what, 194. Proportional influence of the fun and moon, 194. Centrifugal tide, 198. Equinoxial tides, 199. Why fmall tides in the Wert Indies, 203. Exceptions to the theory of the tides folved, 204. Place where there are ne tides, 204. Time of high water, how calculated, 200, ii.
Time, apparent and equated, what, 17 , i. How divided, 168 , ii.
-a cannon ball would take to fly from each of the planets to the fun, 215 , ii .
Time-keeper, its ufe in navigation, 226, ii.
Tin, its properties, 183. Tinned veffels, 192, i.
Tornadoes, violent hurricanes, dreadful whirlwinds; perhaps occafioned by electricity rifing out of the earth when there is a deficiency in the clouds.
Torrid zone, hot fpace contained between the tropics of Cancer and Capricorn.
Tower of Pija, 85 , i .
Trade-winds, 289, i .
Transferrer, what, 246 , i .
Tranfit of Venus, her paffage over the fun's face: 213. How the means of finding the fun's diftance, 213 , ii.
Traveling corn-mill, II3, i.
Tropics, circles parallel to the equator, each 23^{10} dinant from it.
True and apparent places of the planets, 212, ii.
Tube, a pipe.
Truilight, how produced, I5 , ii.

U.

UNDULATION, fwinging, or vibrating like a pendulum.
Univerfal meafure, 84, i.

$$
\mathrm{V}
$$

VACUUM, a piace devoid of air, 23 , , .
Walve, a trap-door, letting a fluid pafs through, but not return.

(N D E X.

Vapsur, condenfed, how, 237, i.
Variation, of the compafs needle, difference between its dirccion, and the true north and fouth points, 65 , i.
Fegetalli fixt alkali, pot-a hi, foda, or any falt found in the afhes of vegetables, 145, 199, i.
$V_{\text {egetable analyis, 198. Confilts principally of light, 23, 198. Vegetable organization }}^{8}$ 50, 199. Vegetable oils, 199. Vegetable falts, 200, i.
Velocity, fpeed, fwiftnefs of motion.
Verus, t, the planet, her motions, magnitude, tranfits, and appearance, 219. Sometimes a morning, and fometimes an evening, ftar, 220, ii.
Verdigris, calx of copper, 172, 192, i.
Vertex, the point at top of any thing.
V ibrate, is to move to and fro like the motion of a pendulum, or a mufical ftring, 82, i .
V is inertia, nuggifhnefs, an endeavour to continue at reft, or that endeavour which all
bodies have to continue in the ftate they are in, whether of reft or of motion, 77, i_{F}
Vifion, how produced, 12 I, ii.
Fital air, how formed ; fee Oxygen Gas. Facts relating to it, 277, i.
Vitreous bunour, a glaffy-like fubftance that fills the orb of the eye.
Vitriol, blue, falt of copper, 172. Green, falt of iron, x_{73}, i.
Vitriolic acid, an acid derived from vitriol, but more commonly from fulphur, 142 , $\mathrm{i}_{\text {. }}$
Volatile, to fly off, be fubject to evaporate.
Volatile alkali, a light alkali, that eafily unites with the air; and is procured by the decompofition of all animal fubftances, $\mathrm{I}_{45}, \mathrm{i}$.

W.

WAGGONS, 130, i.
Water, analyzation of, I46. A conftituent part of all airs; and convertible into air, 253. Waves, how formed-how filled-how feparated from the air, 22 I. How produced, 263. An attempt to prove it an element, 266. Preffes in all directions according to its perpendicular depth, 308. How beft confined by banks, 312. Gravity and preffure different, 315. Will rife to its level, 317. What weight leavy bodies lofe, when weighed in water, 326 . And the fpecific gravities of bodies lighter than water, 328. Specific gravities of fluids, 329. Raifed by its tendency to continue in motion, 340. Watering land, 346. Diflolved in air, 233, 234. How converted into air, 252. How produced by the inflammation of two airs, 203 , i.
Wedge, a triangular piece of wood or metal, ufed to cleave wood, ftone, or feparate hetry bodies, 103 , i.

INDEX.

Weight, particles of all bodies of the fame weight, 44. How beft raifed, rog, i. \longrightarrow, of the air, $231, \mathrm{i}$.
Wells, or fountains, how produced, 339, i.
Wheel-carriages, 115. A new idea of one, 136. Their draught eftimated, 128, iv
Wheels, ill conftructed, $1_{1} 7$, i.
Whirling-table, a machine for exhibiting the laws of central and centrifugal forces, 208, ii.
White, no colour, but a certain mixture of all, 109. Why fnow is white, 109, ii.
Will-o'-th'-wi/p, what, $260, \mathrm{i}$.
Wind, its caufe, 287. Day and night breezes, 288. Harmatan and trade-winds, 289.
The firocco, 290. The monfoons, 292. Force of wind, 292. Wind-gun, 295, i. Windlafs, what, 100 , 1.
Wind-mill, a mill put in motion by wind, IIo. Horizontal wind-mill, III, io Wolfe's apparatus, what, 2 II, i.
Wood, how affected by charring, $258, \mathrm{i}$. Produces the fame by diftillation as pit-coall, 98, ii.

2.

ZENITH, that point in the heavens immediately over head, or oppofite the nadir. Zeolites, 176, i.
Zinc, femimetal, fublimed, 15 I, 195, i.
Zodiac, a zone round the heavens, of fixteen degrees wide, having the ecliptic (or the earth's orbit) running through it, equally diftant from its two fides.
Zodiacal confellations, their names and number, 166, ii.
Zodiacal lightts, what, when feen, 8, i.

This Day are publiged, by G. Kearseey, Fleet-Strcet; RECREATIONS

in
MATHEMATICS AND NATURAL PHILOSOPHY:
Containing amufing Differtations and Enquiries concerning a Variety of Subjects, the moft remarkable and proper to excite Curiofity and Attention to the whole Range of the Mathematical and Philofophical Sciences.
The Whole treated in a pleafing and eafy Manner, and adapted to the Comprebenfion of all whe are the leaff initated in thofe Sciences: viz.

ARITHMETIC,	ASTRONOMY,	PNEUMATICS,
GEOMETRY,	GEOGRAPHY,	HYDROSTATIS,
TRIGONOMETRY,	CHRONOLOGY,	HYDRAULICS,
MECHANICS,	DIALLING,	MAGNETISM,
OPTISS,	ALIGATION,	ELECTRICITY,
ACOUSTICS,	ARCHITECURE,	CHEMISTRY,
MUSIC,	PYROTECHNY,	

Firft compofed by M. OZANAM, of the Royal Academy of Sciences, \&c. Lately recompofed and greatly enlarged, in a new Edition, by the celebrated M. MONTUCLA:
And now tranflated into Englifh, and improved with many Additions and Obfervations,

By CHARLES HUTTON, LL.D. and F.R.S.

AND PROFESSOR OF MATHEMATICS IN THE ROYAL MILTARY ACADAMY, WOOLWICH.

IN FOUR VOLUMES; WITH NUMEROUS PLATES.
Eondon-Printed for G. Kearsley, Fleet-Street: Bell and Bradfute, Edinburgh; and Brash and Reid, Glasgow.

This Day are pubiliged, in one large Volume 12mo. Price 5s.6d. in Boards,

SELECT AMUSEMENTS

in
PHILOSOPHY AND MATHEMATICS;
PROPER FOR AGREEABLY EXERCISING THE MINDS OF

YOUTH.

TRANSI.ATED FROM THE FRENCH OF M. L. DESPIAU, Formerly Profeffor of Matbematics and Pbilofophy, at Paris:
With feveral Corrections and Additions, particularly a large 'Table of the Chances or Odds at Play.
The Whole recommended as an ufeful Book for Schools.
By Dr. HUTTON, Professor of Mathematics at Woolwich. Printed for Go Kearsley, Flect-Street; Bell and Bradfuté, Edinburgh; and Brash and Reid, Glafgow.

In which the Elements of the Science are deduced in a natural Order, froms the Appearances of the Heavens to an Obferver on the Earth; Demonftrated on Mathematical Principles; and explained by an Application to the various
By OLINTHUS GREGORy, Thencherna. of Mathematics, Cambridge.
Printed for G. Kearslet, Fleet-Street; and fold by the Author, and by Deighton, in Cambridge; by Cooke, and by Hanwerit and Parker, Oxford; Bell and Bradgute, Edinburgh; Brash and Reid, Glafgow; and by Colbert, Dublin.

A new Edition of
 The Englifh Encyclopædia,

IF'itb upraids of 400 Plates, elegantly and accurately engraved, Printed on fine Paper, and with a new Type, is juft publifhed in Quarto, being
A COLLECTION of TREATISES, and a DICTIONARY of TERMS, illuftrative of the ARTS and SCIENCES.

Of thes Wrark there are nuw nine Fifumes, or cighteen Parts (each, upon an Average, containing 400 Pages nilcter-rvels, clofely printed, mid twenty Pla:es), already publifled, Price ${ }_{3}$ 3s. 6d. each Part, excepting the iatt, and the Whole will be conipilied in twenty Parts:-of courfe, there are but two more to finifh the Undertaking, which will be printed in the Courfe of the preient Year.

Each Pare, or Half-volume, ? ${ }^{1}$ ice $\mathbf{r}_{\hat{3}}$ s. 6d. in Boards, may be had feparate, at Intervals, or in Weekly Numbers, at Sd. per Number.

To the l'UBLIC.

THE Proprietors of the Englifh Encyciopedia, defirous of meriting general Paronage, have made very uncommon Exerrions, and expended a very large Sum of Money, to obtain a Degree of Superiority in Works of this Nature hitherto unattempted; and, as fully as the Nature of an Advertifement wiil enable them, they now flate their Pretenfions to public Favour.
In point of Editorfhip they beg Leave to remark, that they have fecured the Labour of three well-known literary Characters, who have ufed the utmof Induftry in drawing Refources from modern Authors, as from the well-known Encyclopædia publifhed at Paris, the Dietionary of Chambers, the Encyclopædia Britannica, and other Compilations too numerous to mention. But here they have not fopped; ;-ihey have alfo derived very material Information from every Author in the Arts and Sciences that has publinied within thefe twenty Years; and, to prove that this is not merely Affertion, they refer their Readers to the very complete Treatifes on Aftronomy, Archite Eture , Anatomy, Botany, Chemiftry, Chromatics, Chrenology, Comparative Anatomy, Dyeing, Education, EleCtricity, Entomology, Farriery, Gardening, Geography, Grammar, Heraldry, Hiftory, Horfemanfie, Hufbandry, Hydroftatics, Law, Legerdemain, Logarithms, Logic, Magnetifm, Materia Medica, Mechanics, Medals, Medicine, Metallurgy, Metaphyfics, Metcorology, Midwifery, Mineralogy, Miniature Painting, Moral Philofophy, Mufic, Mythology, Natural Hifory, Na:igation, Optics, Oratory, Ornitholugy, Pdinting, Paper-making, Perfpective, Pharmacy, Philology, Philofophy, Phyfics, Phyfiognomy, Phyfology, Pneumatics, Poctry, Polytheifm, Projectiles, Projection of the Sphere, and Pyrotechny, which liave been compiled with no finall Share of Labour and Expence.

Of the other Merits of this Work it is but fair to ftate, that
The Paper on which they print is of the fineft Rallity for that Purpofe; and that whercon they work :heir Copper-plates is of a very fuperior Fabrication, difplaying the Merit of the Engraving to very confiderable Advantage.

Their Type is new, and of that bold Face which enables the Reader, withnut Jnjury to the Sight, to perufe the limalleft Print, yet they have introduced confderably more Matter into their Page, by a very tumfual Enlargement of the Meafure.
The Plate, , they can with Truth venture to affirm, are very fuperior to any that have yet appeared, for the Purpofes of Illuftration, in any finilar P'ublication.

The Subjects are many of them new, many of them re-drawn, and all delineated with a Degrce of Fruth, Accuracy, and Beauty, that cannot but do much Credit to the Undertaking.
The Proprietors, on the whole, affure the Public, that in every Department it will be their earneft Enneavour to merit a Continuance of their Pationage until the Work is completed, which will be in the Courfe of the Year 1801.

On a Review of their Plan, they are convinced that, within the Compaifs of ten Volumes, they will be sble to comprife couryy Thing really uffful, and including every recent Dijeovery, in the Arts and Sciences.

Orders for this Work, it is requefied, man be particularly exprefed,
Of which one Number, or one Part (or the Whole alrcady puilifhed, including fixtecn Parts), may be hod at a Time.

Printed for G. Kearsley, Flect-Street.

[^0]: * For Sir Ifaac Newton fays in a letter to Dr. Bentley, "If the fun, by his rays, " could carry about the planets, yet I do not fee how he could thereby affect their diur" nal motion."

[^1]: * "Man alone, of animals, can enjoy equally the day and the night; he alone can bear to live within the torrid zone, and upon the ice of the frigid. If certain animals are partakers with him in thefe advantages, it is only by means of his inftractions, and under his protection. For all this he is indebted to the element of fire, of which he alone is the fovereign lord. God has intrufted the firft agent in mature to that being alone who, by his reafon, is qualified to make a right ufe of it."

 $$
 \text { St. Pierre, Stud. I. vol. I. p. } 62 \text { and } 63 \text {, of Hunter's Tianfo }
 $$

[^2]: * For reafon may be confidered as repulfion, while paffion perfonates attraction: fo the material and mental world exhibit analogy.

[^3]: * Cobalt, nickel, and manganefe, refemble iron in many particulars, and are therefore all a little affected by magnetic attraction.

[^4]: * A writer of eminence fays, "Gravity docs not retari a ball's advance."

[^5]: * A body will fall 3 I 3 inches at Spitzbergen, in the fame time that it fall 3 I2 at Quito, near the line.

[^6]: 3f. Spirit of wine diffolves a large quantity of camphor without

[^7]: * The calcareous earth of bones is united with the phofphoric acid.

[^8]: * Wedgwood's.

[^9]: * Heated metals in the act of cooling, are always furrounded by undulations in the air: this is the caloric, or fire, leaving this metal, and combining with the furroundirg air.

[^10]: * It is a curious cxperiment, to put a lighted candle in the bottom of a glafs jar; and from another jar, to pour the fixt air it contains into the firf jar ; the fixt air, by its fuperior weight to common air, finls to the bottom, and extinguifhes the candle- It alfo kills animals immerfed in it.

[^11]: 11．IUSTRATED BT SORTV゚－NTVE COPPER－PLATES，NEATL2 AND ACCURATELT ENGRAVED．

[^12]: * Yet friction univerfally produces electricity: two non-electrics rubbed together have their electricity difturbed, but inftantly reftored; and two electrics rubbed together betray no figns for the fame reafon : \{o, when effects are not fenfible, it is only becaufe electricity is loft as foon as produced. My coat grows more dufty by long brufhing; for electricity is excited by the friction of the brufl, and the motes and duft of the air are attracted to it.

[^13]: * Melted zinc poured on an equal weight of quickfilver, and ftirred together, makes a very good amalgam. A better is faid to be by melting two ounces of tin, and one ounce of zinc, and pouring thefe on three ounces of quickfilver in a wooden box well chalked within; being firred, they unite into a hard mafs, which mult be well pounded and fifted through cambric, and then mixt with as much hog's lard as will make it fread.

[^14]: * When it is confidered that there are a great number of bad conducting points from the feather, and but one receiving point of metal, the condenfation at that point mult be fo great, that the reaction will overpower the emanation from the feathers.

[^15]: * An elcetrometer is an inftrument for meafuring the charge of a jar or battery; founded on the principle of electrical repulfion, as explained in the laft fection. It confifts of a femi-circle fixed as fig. 8, Plate XXX. and graduated into two quadrants. From the centre of the femi-circle is fupended on brafs pivots a fmall rod of wood, with a pith ball at its extremity.

[^16]: * Bennet's clectrometer is a cylinder of glafs, c, faftened into the metal bottom m. From the metal cap z is fufpended two flips of leaf-gold, $n n$, about four inches long, and half an inch wide, reaching near the bottom. Two flips of tin-foil, $s s$, are pafted to the glafs cylinder parallel to the leaf-gold.

[^17]: 12th. Tranfparent bodies are, in general, non-conductors of elecvol. II.

[^18]: * It has been affirmed, that a perfect vacuum will not conduct electricity. I have boiled quickfilver, to expel all its air, in a double or fyphon, barometer tube, of ten feet in length : when one end of it was infulated, and communicated with the conductor, the electricity paffed through it with the utmoft eafe; and was luminous in the dark.

[^19]: VOL. II.

[^20]: * Sce vol. I. page 3.

[^21]: * When three letters reprefent the three angles of a triangle, the middle letter is the angle in queftion.

[^22]: * When we fay the earth's axis points to what we call the polar ftar, we do not fpeak correctly true, for the axis points now above a degree on one fide of it. Neither are'we correct in faying the earth's axis inclines to the ecliptic $23 \frac{\text { d }}{\frac{\text { ta }}{2}}$, for that is fpeaking of it in numbers; its mean inclination is about $27^{\circ} 50^{\prime}$: befides it has an annual nutation, being fometimes more and fonsetimes lefs than that, according to the inclination with which the protuberent part of the carth lies to the fun, and the fituation of the moon's nodes. It is alfo faid, that the inclimation of the ecliptic to the cquator is lefs. by 23^{\prime} than it was in the time of Eratofthenes, 276 years before Chrift.

[^23]: * This cliameter conjoining the aphelion and perihelion points in a line paffing through the centre of the orbit of a planet; to which the apogee and perigee correfpond between the moon and the earth.

[^24]: * This I rather think is but in appearance; for if the declination of the fatellite be greater than its latitude, it will have a retrograde appearance.

[^25]: * De la Lande has afcertained the places of 43,400 ftars, none lefs than of the 7 th magnitude ; and mcans to continue his obfervations till he has completed 50,000, an yet to go no farther than the tropic of Capricorn. He apprehends, with the telefcope with which thefe obfervations were made (viz. an achromatic of two inches aperture), that 300,000 might probably be vifible on the whole furface of the heavens; and that the telefcope of Dr. Herfchel, which has 18 times the aperture, i.e. 324 times the light, would difcover 90 millions! and no doubt, thefe are very few in comparifon of what exifts.

